Homework Problem Set 4

1. Consider the matrix $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$.
 - Find its eigenvalues and eigenvectors.
 - Use the methods we discussed in class to show that as $\nu \to \infty$ for a power method iteration, the normalization factor $\sigma_\nu \to |\lambda_1|$, where λ_1 is the dominant eigenvalue.
 - Combining the power method and the above observation, write a short function that performs a power method for a matrix A with an initial guess X for the dominant eigenvector, up to a tolerance tol and with a maximal number of iterations max.it.
 - Apply the method to the above matrix $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$, with an initial guess of $X = [1, 0]'$ and show the results (say for $tol = 1e-08$ and $\text{max.it} = 1000$).

2. Consider a matrix A with eigenvalues λ_i and eigenvectors X^i. Consider for simplicity that the eigenvectors are orthonormal so that the inner product $(X^i, X^j) = (X^i)^T X^j = \sum_{k=1}^n X^i_k X^j_k = \delta_{ij}$ If the dominant eigenvalue is λ_1 and the corresponding eigenvector X_1, show that the matrix $B = A - \lambda_1 X_1 X_1^T$ can be used to obtain, using the power method, the eigenvector X_2. [Assume $|\lambda_1| > |\lambda_2| > |\lambda_3| > \ldots > |\lambda_n| > 0$]. What would you do (which matrix would you use and why) if you were asked to find, instead of X_2, the eigenvector X_3?

3. Oftentimes, it is possible to improve Gerschgorin’s estimates, by using a diagonal matrix as follows:
 - Consider instead of matrix A, the similar matrix $D^{-1}AD$, where $D = \text{diag}(d_1, \ldots, d_n)$. Show then that the Gerschgorin circles C_i are given by $|\lambda - a_{ii}| \leq \sum_{k=1, k \neq i}^n \left| \frac{a_{ik}d_k}{d_i} \right|$.
 - Consider the matrix $A = \begin{bmatrix} 1, \epsilon, \epsilon, 2, \epsilon, \epsilon, \epsilon, 2 \end{bmatrix}$. Use $B = D^{-1}AD$ to find the new Gerschgorin circles for $D = \text{diag}(1, k\epsilon, k\epsilon)$. Assume that $k > 0$ and $\epsilon > 0$.
 - If ρ_1 and $\rho_2 = \rho_3$ are the two Gerschgorin radii for B, find the k that for a fixed ϵ minimizes the sum $\rho = \rho_1 + \rho_2$. Calculate the same quantity for the original matrix A and show that indeed ρ (which is a measure of the uncertainty in knowing the eigenvalues) is indeed smaller for B.