Stat705 PS 7. Due in class Monday, November 13th

1. Let $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{e}, \mathbf{X}$ is n by $p, p<n$, rank p.
(a) Let $\mathbf{r}=(\mathbf{I}-\mathbf{P}) \mathbf{y}$ where $\mathbf{P}=\mathbf{X}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathrm{T}}$. Let $\mathbf{U D U}^{\mathrm{T}}$ be the SVD of $(\mathbf{I}-\mathbf{P})$. What is $\operatorname{cov}\left(\mathbf{U}^{\mathrm{T}} \mathbf{r}\right)$? Show that p elements of $\mathbf{U}^{\mathrm{T}} \mathbf{r}$ are always zero.
(b) Let $p_{i i}$ be the i th diagonal element of \mathbf{P}. Use the Sherman-Morrison formula given in class to prove that the i th deleted residual is $r_{i} /\left(1-p_{i i}\right)$.
2. Assume the same model and notation as above. As given in class, Cook's distance is

$$
D_{i}=\frac{\sum_{j=1}^{n}\left(\widehat{y}_{j}-\widehat{y}_{j(i)}\right)^{2}}{p M S E} .
$$

(a) Describe in words what D_{i} means.
(b) Show that

$$
D_{i}=\frac{r_{i}}{p M S E}\left[\frac{p_{i i}}{\left(1-p_{i i}\right)^{2}}\right]
$$

