Stat705 Exam 1

- 1. Suppose $\mathbf{y} \sim MVN(\mathbf{0}, \mathbf{\Sigma}), \mathbf{\Sigma} = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}, -1 < \rho < 1$. Are $y_1^2 + 2y_1y_2 + y_2^2$ and $y_1^2 2y_1y_2 + y_2^2$ independent? Why or why not? You may cite a theorem without proof.
- 2. Let \mathbf{y} be a random vector with length n. Let \mathbf{X} be an n by p matrix with rank p. Suppose \mathbf{y} is normal with mean $\mathbf{X}\boldsymbol{\beta}$ and covariance $\sigma^2 \mathbf{I}_n$.
 - (a) What is the least squares estimator of β ? (You do not need to derive this.)
 - (b) What are matrix expressions for $\hat{\mathbf{y}}$ and \mathbf{e} (residuals)? (You do not need to derive this.)
 - (c) What is the distribution of the vector $\mathbf{t} = (\widehat{\mathbf{y}}^{\mathrm{T}}, \mathbf{e}^{\mathrm{T}})^{\mathrm{T}}$? (Please justify your answer.)
 - (d) Are SSE and $\hat{\beta}$ independent? Why or why not?
- 3. Evaluate the integral $\int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} (\mathbf{x}^{\mathrm{T}} \mathbf{B} \mathbf{x} + \mathbf{x}^{\mathrm{T}} \mathbf{c}) \exp \{-(\mathbf{x} \mathbf{a})^{\mathrm{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} \mathbf{a})\} dx_1, \dots, dx_n.$ For full credit, please justify each step.