Stat705 Exam 1

1. Suppose $\mathbf{y} \sim \operatorname{MVN}(\mathbf{0}, \boldsymbol{\Sigma}), \boldsymbol{\Sigma}=\left(\begin{array}{cc}1 & \rho \\ \rho & 1\end{array}\right),-1<\rho<1$. Are $y_{1}^{2}+2 y_{1} y_{2}+y_{2}^{2}$ and $y_{1}^{2}-2 y_{1} y_{2}+y_{2}^{2}$ independent? Why or why not? You may cite a theorem without proof.
2. Let \mathbf{y} be a random vector with length n. Let \mathbf{X} be an n by p matrix with rank p. Suppose \mathbf{y} is normal with mean $\mathbf{X} \boldsymbol{\beta}$ and covariance $\sigma^{2} \mathbf{I}_{n}$.
(a) What is the least squares estimator of $\boldsymbol{\beta}$? (You do not need to derive this.)
(b) What are matrix expressions for $\widehat{\mathbf{y}}$ and \mathbf{e} (residuals)? (You do not need to derive this.)
(c) What is the distribution of the vector $\mathbf{t}=\left(\widehat{\mathbf{y}}^{\mathrm{T}}, \mathbf{e}^{\mathrm{T}}\right)^{\mathrm{T}}$? (Please justify your answer.)
(d) Are SSE and $\widehat{\beta}$ independent? Why or why not?
3. Evaluate the integral $\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty}\left(\mathbf{x}^{\mathrm{T}} \mathbf{B} \mathbf{x}+\mathbf{x}^{\mathrm{T}} \mathbf{c}\right) \exp \left\{-(\mathbf{x}-\mathbf{a})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\mathbf{a})\right\} d x_{1}, \ldots, d x_{n}$. For full credit, please justify each step.
