1. Problem 10.2 from Trefethen & Bau.

2. Problem 11.3 from Trefethen & Bau.

3. Problem 12.2 from Trefethen & Bau.

4. Problem 13.3 from Trefethen & Bau.

5. Prove the following:

 (a) \(\kappa(A) \geq 1 \) for any induced matrix norm.

 (b) If \(U \) is unitary, then \(\kappa_2(U) = 1, \kappa_2(UA) = \kappa_2(AU) = \kappa_2(A) \).

 (c) \(\kappa_2(A) = \sigma_{\text{max}}/\sigma_{\text{min}} \).

 (d) If \(A \) is hermitian, then \(\kappa_2(A) = |\lambda|_{\text{max}}/|\lambda|_{\text{min}} \).

 (e) If \(Ax = b \) and \((A + \delta A)(x + \delta x) = b\), then \(\|\delta x\|/\|x + \delta x\| \leq \kappa(A) \).

6. Consider \(Ax = b \). Let \(x \) be the exact solution and let \(\tilde{x} \) be an approximate solution. The error is \(e = x - \tilde{x} \) and the residual is \(r = b - A\tilde{x} \).

 (a) Show that \(Ae = r \) and \(\|e\|/\|x\| \leq \kappa(A) \|r\|/\|b\| \).

 (b) It follows that if \(A \) is invertible, then \(e = 0 \) if and only if \(r = 0 \), but if \(A \) is ill-conditioned, then the relative error \(\|e\|/\|x\| \) may be large even if the relative residual \(\|r\|/\|b\| \) is small. This occurs in the following example (due to W. Kahan).

 \[
 A = \begin{pmatrix} 1.2969 & 0.8648 \\ 0.2161 & 0.1441 \end{pmatrix}, \quad b = \begin{pmatrix} 0.8642 \\ 0.1440 \end{pmatrix}, \quad x = \begin{pmatrix} 2 \\ -2 \end{pmatrix}, \quad \tilde{x}_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad \tilde{x}_2 = \begin{pmatrix} 0.9911 \\ -0.4870 \end{pmatrix}
 \]

 Show that \(Ax = b \) (using exact arithmetic). Consider \(\tilde{x}_1 \) and \(\tilde{x}_2 \) as approximate solutions and or each one compute the corresponding \(\|e\|_\infty/\|x\|_\infty, \|r\|_\infty/\|b\|_\infty \). Find \(\kappa_\infty(A) \).