
HW #2 Solutions: M552 Spring 2006

1. (3.1-Trefethen & Bau) Prove that if W is an arbitrary nonsingular matrix, the function ‖ · ‖W

defined by ‖x‖W = ‖Wx‖ is a vector norm.

ANS: We need to show

(i) ‖x‖W ≥ 0, ‖x‖W = 0 ⇔ x = 0

Given any x, ‖x‖W = ‖Wx‖ ≥ 0 since ‖ · ‖ ≥ 0. Let y = Wx, and note since W is
nonsingular y = 0 ⇔ x = 0. Then ‖x‖W = ‖y‖ = 0 ⇔ y = 0 ⇔ x = 0.

(ii) ‖αx‖W = |α|‖x‖W

‖αx‖W = ‖W (αx)‖ = ‖αWx‖ = |α|‖Wx‖, since this is true for the ‖ · ‖ norm. Thus,
‖αx‖W = |α|‖Wx‖ = |α|‖x‖W .

(iii) ‖x + y‖W ≤ ‖x‖W + ‖y‖W

‖x + y‖W = ‖W (x + y)‖ = ‖Wx + Wy‖ ≤ ‖Wx‖+ ‖Wy‖, since ‖u + v‖ ≤ ‖u‖+ ‖v‖ for
any u, v. Thus, ‖x + y‖W ≤ ‖Wx‖ + ‖Wy‖ = ‖x‖W + ‖y‖W .



2. (3.2-Trefethen & Bau) Let ‖ · ‖ denote any norm on C
m and also the induced matrix norm on

Cm×m. Show that ρ(A) ≤ ‖A‖, where ρ(A) is the spectral radius of A, i.e., the largest absolute
value |λ| of an eigenvalue λ of A.

ANS: First note that for any x, ‖Ax‖ ≤ ‖A‖‖x‖ since this is a property of any induced matrix
norm. Now, let (λ, x) be any e-pair of A, i.e., Ax = λx.Then

|λ|‖x‖ = ‖λx‖ = ‖Ax‖ ≤ ‖A‖‖x‖ ⇒ |λ| ≤ ‖A‖.

Note we divided by ‖x‖ 6= 0 since x is and e-vector, so we must have x 6= 0. Thus |λ| ≤ ‖A‖,
and taking the sup over all λ on the left-handside (in fact a max since their are only a finite
number of e-values), and noting the the right-handside is independent of λ gives the result.



3. (3.3-Trefethen & Bau) Vector and matrix p-norms are related by various inequalities, often
involving the dimensions m or n. For each of the following, verify the inequality and give an
example of a nonzero vector or matrix (for general m,n) for which equality is achieved. In this
problem x is a m-vector and A is a m × n matrix.

(a) ‖x‖∞ ≤ ‖x‖2,

(b) ‖x‖2 ≤
√

m‖x‖∞,

(c) ‖A‖∞ ≤ √
n‖A‖2,

(d) ‖A‖2 ≤
√

m‖A‖∞.

ANS:

(a) ‖x‖∞ = maxi |xi| = maxi (|xi|2)1/2 ≤ (
∑m

i=1 |xi|2)1/2
= ‖x‖2. Equality is achieved for

x = ek, k = 1, . . . , m, where ek is one of the standard basis vectors for C
m.

(b) ‖x‖2 = (
∑m

i=1 |xi|2)1/2 ≤ (
∑m

i=1 maxi |xi|2)1/2
= (m‖x‖2

∞)
1/2

=
√

m‖x‖∞. For equality
take x = (1, 1, . . . , 1)T ∈ Cm. Then ‖x‖∞ = 1 and ‖x‖2 =

√
m.

(c) We have

‖A‖∞ = sup
x 6=0

‖Ax‖∞
‖x‖∞

≤ sup
x 6=0

‖Ax‖2

‖x‖∞
using (a) in the numerator

≤ sup
x 6=0

‖Ax‖2

‖x‖2/
√

n
using (b) in the denominator, and noting x ∈ C

n

=
√

n‖A‖2

For equality, let A ∈ C
m×n be the matrix whose first row is all ones, and zeros elsewhere.

Clearly ‖A‖∞ = n. Now, A∗A is an n × n matrix whose entries are all equal to one (check!)
and its rank is 1. So 0 is an e-value of A∗A of multiplicity n−1. What is the remaining e-value?
It is λn = n, which is easily seen to be the case since x = (1, 1, . . . , 1)T ∈ Cn is a corresponding
e-vector (check!). Thus ‖A‖2 =

√

ρ(A∗A) =
√

n. So we have ‖A‖∞ = n =
√

n
√

n =
√

n‖A‖2.

(d) We have

‖A‖2 = sup
x 6=0

‖Ax‖2

‖x‖2

≤ sup
x 6=0

√
m‖Ax‖∞
‖x‖2

using (b) in the numerator, and noting Ax ∈ C
m

≤ sup
x 6=0

√
m‖Ax‖∞
‖x‖∞

using (a) in the denominator

=
√

m‖A‖∞
For equality, let A ∈ Cm×n be the matrix whose first column is all ones, and zeros elsewhere.
Clearly ‖A‖∞ = 1. Now, A∗A is an n × n diagonal matrix whose entries are all equal to zero,
except for the (1, 1) entry, which is equal to m (check!). Thus, ‖A‖2 =

√

ρ(A∗A) =
√

m. So
we have ‖A‖2 =

√
m =

√
m ∗ 1 =

√
m‖A‖∞.



4. Prove that given a vector norm ‖x‖, the formula ‖A‖ = sup
x 6=0

‖Ax‖
‖x‖ defines a matrix norm for a

square matrix A. Recall, this is referred to as the induced matrix norm.

ANS: Suppose A ∈ Cm×m. We need to show:

(i) ‖A‖ ≥ 0, and ‖A‖ = 0 only if A = 0.

‖A‖ ≥ 0 since it is the supremum of the ratio of ‖x‖, ‖Ax‖ ≥ 0. Now suppose ‖A‖ = 0
but A 6= 0. Since A 6= 0 there exists an x 6= 0 such that Ax = y 6= 0. For example, if
ak 6= 0 where ak is the kth column of A (and there must be one since A 6= 0) let x = ek.
Then y = ak and ‖Ax‖/‖x‖ = ‖y‖/‖x‖ > 0, hence so is the suprmum over all x 6= 0.
Contradiction. So A = 0.

(ii) ‖A + B‖ ≤ ‖A‖ + ‖B‖.
We have ‖x + y‖ ≤ ‖x‖ + ‖y‖ for any x, y ∈ Cm. Then

‖A + B‖ = sup
x 6=0

‖(A + B)x‖
‖x‖ = sup

x 6=0

‖Ax + Bx‖
‖x‖

≤ sup
x 6=0

‖Ax‖ + ‖Bx‖
‖x‖

= sup
x 6=0

‖Ax‖
‖x‖ + sup

x 6=0

‖Bx‖
‖x‖

= ‖A‖ + ‖B‖.

(iii) ‖αA‖ = |α|‖A‖.
We have ‖αx‖ = |α|‖x‖ for any x ∈ Cm, α ∈ C. Then

‖αA‖ = sup
x 6=0

‖αAx‖
‖x‖ = sup

x 6=0

|α|‖Ax‖
‖x‖

= sup
x 6=0

α‖Ax‖
‖x‖ = α sup

x 6=0

‖Ax‖
‖x‖

= |α|‖A‖.



5. Prove that ‖A‖∞ = max
i

∑

j

|aij |, the maximum absolute row sum of the matrix A.

ANS: Assume A ∈ Cm×n and x ∈ Cn. Then

‖Ax‖∞ = max
i

|(Ax)i| = max
i

|
∑

j

aijxj | = max
i

∑

j

|aij||xj| ≤ ‖x‖∞ max
i

∑

j

|aij|.

So
‖Ax‖∞
‖x‖∞

≤ max
i

∑

j

|aij | for all x 6= 0. Now let k be such that max
i

∑

j

|aij | =
∑

j

|akj|. If

there is more than one such k choose the minimum. We can then write akj = rje
iθj for some

real number rj ≥ 0 and 0 ≤ θj < 2π. Note |akj| = |rje
iθj | = |rj||eiθj | = |rj| = rj . Define

x̃ ∈ Cn by x̃j = e−iθj for j = 1, . . . , n. Notice that is A were a real matrix then we would have
x̃j = ±1 = e−i(0,π). Then ‖x̃‖∞ = 1 and

|
∑

j

akj x̃j | = |
∑

j

rje
iθje−iθj | = |

∑

j

rj | =
∑

j

rj =
∑

j

|akj|.

Finally,

‖Ax‖∞ = sup
x 6=0

‖Ax‖∞
‖x‖∞

≤ max
i

∑

j

|aij | =
∑

j

|akj| =
‖Ax̃‖∞
‖x̃‖∞

≤ sup
x 6=0

‖Ax‖∞
‖x‖∞

= ‖Ax‖∞.

Thus, ‖Ax‖∞ = max
i

∑

j

|aij|, the maximum absolute row sum of A.



6. Consider the 2-point BVP

{

−y′′ + (4x2 + 2)y = 2x(1 + 2x2)

y(0) = 1, y(1) = 1 + e

The exact solution is y(x) = x + ex2

. Write a MATLAB function M-file to solve the problem
using the 4th order centered compact FD scheme

−D+D−

(

1 − h2

12
ci

)

ui + ciui =
(

1 +
h2

12
D+D−

)

fi.

Use meshsize h = 1/2p, where p is a positive integer. Your code should use your M-files trilu
and trilu solve. For p = 1 : 4, plot the exact solution (y(x) vs. x) and the numerical solution
(ui vs. xi), including the boundary points. The 4 plots should appear separately in one figure,
with axes labeled and a title for each indicating p. Investigate subplot in MATLAB for how to
have multiple plots in a single figure window. For p = 1 : 20 present a table with the following
data - column 1: h; column 2: ‖uh − yh‖∞; column 3: ‖uh − yh‖∞/h4; column 4: cpu time;
column 5: (cpu time)/m, where h = 1/(m + 1). Discuss the trends in each column. Also,
compare the accuracy for each h with the results of the 2nd order code from HW #1. How do
the computational times compare? Include a copy of your code.

ANS: Writing out the discretization gives

−(1 − h2

12
ci−1)ui−1 + (2 + 5h2

6
ci)ui − (1 − h2

12
ci+1)ui+1

h2
= fi +

(fi−1 − 2fi + fi+1)

12
.

Here is the code for the first part of the problem, followed by a listing of the M-file function
bvp solve4. The latter requires the M-files trilu and trilu solve from problem 7 (hw #1).

xx=0:0.01:1;xx=xx’;

yy=xx+exp(xx.^2);

c=’4.*x.^2+2’; f=’2*x.*(1+2*x.^2)’;

clf;

for p=1:4

[x,u]=bvp_solve4(2^p-1,0,1,1,1+exp(1),c,f);

max(abs(u-(x+exp(x.^2))))

subplot(2,2,p),plot(xx,yy,x,u,’*’),grid

axis(’tight’),xlabel(’x’),ylabel(’y’),title([’p=’,num2str(p)])

end

function [xv,uv,stime]=bvp_solve4(m,a,b,ya,yb,c,f)

%

h=(b-a)/(m+1);

xv=a:h:b; xv=xv’;

fv=zeros(m+2,1);

cv=zeros(m+2,1);



%

x=xv;

cfv=eval(c);

fv=eval(f);

%

% setup tridiagonal matrix and rhs

%

av=(2+(5/6)*h^2*cfv(2:m+1))/(h^2);

bv=zeros(m,1); bv(2:m) =-(1-(h^2/12)*cfv(2:m ))/(h^2); bv(1)=0;

cv=zeros(m,1); cv(1:m-1)=-(1-(h^2/12)*cfv(3:m+1))/(h^2); cv(m)=0;

fv=fv(2:m+1)+(1/12)*(fv(1:m)-2*fv(2:m+1)+fv(3:m+2));

%

% BC adjustment

%

fv(1)=fv(1)+(1-(h^2/12)*cfv(1) )*ya/(h*h);

fv(m)=fv(m)+(1-(h^2/12)*cfv(m+2))*yb/(h*h);

%

% solve tridiagonal system; collect cpu time

%

tic;

[alpha,beta]=trilu(av,bv,cv);

uv=trilu_solve(alpha,beta,cv,fv);

stime=toc;

uv=[ya;uv;yb];

Here is the graph for p = 1, 2, 3 and 4.
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Next we solve the BVP with m = 2p − 1 for p = 1, . . . , 20. Here is the code:

c=’4*x.^2+2’; f=’2*x.*(1+2*x.^2)’;

clf;

h=zeros(20,1); m=zeros(20,1);

times=zeros(20,1);

err_inf=zeros(20,1);

for p=1:20

[x,u,stime]=bvp_solve4(2^p-1,0,1,1,1+exp(1),c,f);

h(p)=1/(2^p);

m(p)=2^p-1;

times(p)=stime;

y=x+exp(x.^2);

err_inf(p)=max(abs(u-y));

end

format short e

disp(’ ’)

disp(’ h inf_err err/h^4 cputime cputime/m ’)

disp(’ ----------------------------------------------------------------’)

disp(’ ’)

disp([h err_inf err_inf./h.^4 times times./m])

The results are:

h inf_err err/h^4 cputime cputime/m

----------------------------------------------------------------

5.0000e-01 1.2852e-02 2.0563e-01 9.2100e-04 9.2100e-04

2.5000e-01 9.7605e-04 2.4987e-01 1.9500e-04 6.5000e-05

1.2500e-01 6.3927e-05 2.6185e-01 1.3600e-04 1.9429e-05

6.2500e-02 4.0888e-06 2.6796e-01 1.3100e-04 8.7333e-06

3.1250e-02 2.5615e-07 2.6859e-01 1.5300e-04 4.9355e-06

1.5625e-02 1.6019e-08 2.6875e-01 2.1600e-04 3.4286e-06

7.8125e-03 1.0013e-09 2.6878e-01 2.5800e-03 2.0315e-05

3.9062e-03 6.1728e-11 2.6512e-01 6.3200e-04 2.4784e-06

1.9531e-03 1.0814e-12 7.4310e-02 1.0260e-03 2.0078e-06

9.7656e-04 1.3562e-11 1.4911e+01 2.2850e-03 2.2336e-06

4.8828e-04 5.5336e-11 9.7347e+02 4.4010e-03 2.1500e-06

2.4414e-04 2.1187e-10 5.9635e+04 8.8300e-03 2.1563e-06

1.2207e-04 8.7924e-10 3.9597e+06 1.6935e-02 2.0675e-06

6.1035e-05 1.2362e-09 8.9078e+07 3.5043e-02 2.1390e-06

3.0518e-05 2.3403e-09 2.6982e+09 6.8585e-02 2.0931e-06

1.5259e-05 1.3832e-09 2.5516e+10 1.3560e-01 2.0692e-06

7.6294e-06 1.3652e-08 4.0293e+12 2.6766e-01 2.0421e-06

3.8147e-06 4.3051e-07 2.0330e+15 5.3457e-01 2.0392e-06



1.9073e-06 1.3555e-07 1.0242e+16 1.0638e+00 2.0291e-06

9.5367e-07 7.0937e-07 8.5757e+17 2.1305e+00 2.0318e-06

We can see from the err/h4 column that the expected O(h4) error is observed until h ≈
3.9062e − 3 since err/h4 rapidly approaches a constant. But then we lose accuracy. Why?
Roundoff error begins to dominate, as well as the conditioning of the matrix! Note, however,
that the cputime stills scales linearly with m as evidenced by the cputime/m column.

Comparing with the second order method of HW #1 we see that the cpu timeS for the solvers
are close. However, for moderate p the fourth order solution is clearly superior. For example,
the error is 6.1728e− 1 for h = 3.9062e− 03, while for the second order method with the same
h the error is 5.4521e − 06.

Note: I have only timed the linear solver portion of the code.


