1. (3.1-*Trefethen & Bau*) Prove that if W is an arbitrary nonsingular matrix, the function $\|\cdot\|_W$ defined by $\|x\|_W = \|Wx\|$ is a vector norm.

 $\underline{\mathbf{ANS}}$: We need to show

(i) $||x||_W \ge 0$, $||x||_W = 0 \iff x = 0$

Given any $x, ||x||_W = ||Wx|| \ge 0$ since $||\cdot|| \ge 0$. Let y = Wx, and note since W is nonsingular $y = 0 \Leftrightarrow x = 0$. Then $||x||_W = ||y|| = 0 \Leftrightarrow y = 0 \Leftrightarrow x = 0$.

- (ii) $\|\alpha x\|_W = |\alpha| \|x\|_W$ $\|\alpha x\|_W = \|W(\alpha x)\| = \|\alpha W x\| = |\alpha| \|W x\|$, since this is true for the $\|\cdot\|$ norm. Thus, $\|\alpha x\|_W = |\alpha| \|W x\| = |\alpha| \|x\|_W$.
- (iii) $||x + y||_W \le ||x||_W + ||y||_W$ $||x + y||_W = ||W(x + y)|| = ||Wx + Wy|| \le ||Wx|| + ||Wy||$, since $||u + v|| \le ||u|| + ||v||$ for any u, v. Thus, $||x + y||_W \le ||Wx|| + ||Wy|| = ||x||_W + ||y||_W$.

2. (3.2-Trefethen & Bau) Let $\|\cdot\|$ denote any norm on \mathbb{C}^m and also the induced matrix norm on $\mathbb{C}^{m \times m}$. Show that $\rho(A) \leq \|A\|$, where $\rho(A)$ is the spectral radius of A, i.e., the largest absolute value $|\lambda|$ of an eigenvalue λ of A.

<u>ANS</u>: First note that for any x, $||Ax|| \le ||A|| ||x||$ since this is a property of any induced matrix norm. Now, let (λ, x) be any e-pair of A, i.e., $Ax = \lambda x$. Then

$$|\lambda|||x|| = ||\lambda x|| = ||Ax|| \le ||A|| ||x|| \quad \Rightarrow \quad |\lambda| \le ||A||.$$

Note we divided by $||x|| \neq 0$ since x is and e-vector, so we must have $x \neq 0$. Thus $|\lambda| \leq ||A||$, and taking the sup over all λ on the left-handside (in fact a max since their are only a finite number of e-values), and noting the the right-handside is independent of λ gives the result.

- 3. (3.3-Trefethen & Bau) Vector and matrix p-norms are related by various inequalities, often involving the dimensions m or n. For each of the following, verify the inequality and give an example of a nonzero vector or matrix (for general m,n) for which equality is achieved. In this problem x is a m-vector and A is a $m \times n$ matrix.
 - (a) $||x||_{\infty} \le ||x||_{2}$, (b) $||x||_{2} \le \sqrt{m} ||x||_{\infty}$,
 - (c) $||A||_{\infty} \le \sqrt{n} ||A||_{2}$, (c) $||A||_{\infty} \le \sqrt{n} ||A||_{2}$,
 - (d) $||A||_2 < \sqrt{m} ||A||_\infty$.

ANS:

(a) $||x||_{\infty} = \max_i |x_i| = \max_i (|x_i|^2)^{1/2} \le (\sum_{i=1}^m |x_i|^2)^{1/2} = ||x||_2$. Equality is achieved for $x = e_k, k = 1, \ldots, m$, where e_k is one of the standard basis vectors for \mathbb{C}^m .

(b) $\|x\|_2 = \left(\sum_{i=1}^m |x_i|^2\right)^{1/2} \le \left(\sum_{i=1}^m \max_i |x_i|^2\right)^{1/2} = \left(m\|x\|_{\infty}^2\right)^{1/2} = \sqrt{m}\|x\|_{\infty}$. For equality take $x = (1, 1, \dots, 1)^T \in \mathbb{C}^m$. Then $\|x\|_{\infty} = 1$ and $\|x\|_2 = \sqrt{m}$.

(c) We have

$$\begin{split} \|A\|_{\infty} &= \sup_{x \neq 0} \frac{\|Ax\|_{\infty}}{\|x\|_{\infty}} \\ &\leq \sup_{x \neq 0} \frac{\|Ax\|_2}{\|x\|_{\infty}} \quad \text{using (a) in the numerator} \\ &\leq \sup_{x \neq 0} \frac{\|Ax\|_2}{\|x\|_2/\sqrt{n}} \quad \text{using (b) in the denominator, and noting } x \in \mathbb{C}^n \\ &= \sqrt{n} \|A\|_2 \end{split}$$

For equality, let $A \in \mathbb{C}^{m \times n}$ be the matrix whose first row is all ones, and zeros elsewhere. Clearly $||A||_{\infty} = n$. Now, A^*A is an $n \times n$ matrix whose entries are all equal to one (check!) and its rank is 1. So 0 is an e-value of A^*A of multiplicity n-1. What is the remaining e-value? It is $\lambda_n = n$, which is easily seen to be the case since $x = (1, 1, \ldots, 1)^T \in \mathbb{C}^n$ is a corresponding e-vector (check!). Thus $||A||_2 = \sqrt{\rho(A^*A)} = \sqrt{n}$. So we have $||A||_{\infty} = n = \sqrt{n}\sqrt{n} = \sqrt{n}||A||_2$. (d) We have

$$\begin{aligned} \|A\|_2 &= \sup_{x \neq 0} \frac{\|Ax\|_2}{\|x\|_2} \\ &\leq \sup_{x \neq 0} \frac{\sqrt{m} \|Ax\|_{\infty}}{\|x\|_2} \qquad \text{using (b) in the numerator, and noting } Ax \in \mathbb{C}^m \\ &\leq \sup_{x \neq 0} \frac{\sqrt{m} \|Ax\|_{\infty}}{\|x\|_{\infty}} \qquad \text{using (a) in the denominator} \\ &= \sqrt{m} \|A\|_{\infty} \end{aligned}$$

For equality, let $A \in \mathbb{C}^{m \times n}$ be the matrix whose first column is all ones, and zeros elsewhere. Clearly $||A||_{\infty} = 1$. Now, A^*A is an $n \times n$ diagonal matrix whose entries are all equal to zero, except for the (1, 1) entry, which is equal to m (check!). Thus, $||A||_2 = \sqrt{\rho(A^*A)} = \sqrt{m}$. So we have $||A||_2 = \sqrt{m} = \sqrt{m} \times 1 = \sqrt{m} ||A||_{\infty}$.

- 4. Prove that given a vector norm ||x||, the formula ||A|| = sup ||Ax|| / ||x|| defines a matrix norm for a square matrix A. Recall, this is referred to as the *induced matrix norm*.
 <u>ANS</u>: Suppose A ∈ C^{m×m}. We need to show:
 - (i) $||A|| \ge 0$, and ||A|| = 0 only if A = 0.

 $||A|| \ge 0$ since it is the supremum of the ratio of $||x||, ||Ax|| \ge 0$. Now suppose ||A|| = 0but $A \ne 0$. Since $A \ne 0$ there exists an $x \ne 0$ such that $Ax = y \ne 0$. For example, if $a_k \ne 0$ where a_k is the k^{th} column of A (and there must be one since $A \ne 0$) let $x = e_k$. Then $y = a_k$ and ||Ax||/||x|| = ||y||/||x|| > 0, hence so is the suprmum over all $x \ne 0$. Contradiction. So A = 0.

(ii) $||A + B|| \le ||A|| + ||B||.$

We have $||x + y|| \le ||x|| + ||y||$ for any $x, y \in \mathbb{C}^m$. Then

$$A + B \| = \sup_{x \neq 0} \frac{\|(A + B)x\|}{\|x\|} = \sup_{x \neq 0} \frac{\|Ax + Bx\|}{\|x\|}$$
$$\leq \sup_{x \neq 0} \frac{\|Ax\| + \|Bx\|}{\|x\|}$$
$$= \sup_{x \neq 0} \frac{\|Ax\|}{\|x\|} + \sup_{x \neq 0} \frac{\|Bx\|}{\|x\|}$$
$$= \|A\| + \|B\|.$$

(iii) $\|\alpha A\| = |\alpha| \|A\|.$

We have $\|\alpha x\| = |\alpha| \|x\|$ for any $x \in \mathbb{C}^m$, $\alpha \in \mathbb{C}$. Then

$$\|\alpha A\| = \sup_{x \neq 0} \frac{\|\alpha Ax\|}{\|x\|} = \sup_{x \neq 0} \frac{|\alpha| \|Ax\|}{\|x\|}$$
$$= \sup_{x \neq 0} \frac{\alpha \|Ax\|}{\|x\|} = \alpha \sup_{x \neq 0} \frac{\|Ax\|}{\|x\|}$$
$$= |\alpha| \|A\|.$$

5. Prove that $||A||_{\infty} = \max_{i} \sum_{j} |a_{ij}|$, the maximum absolute row sum of the matrix A.

<u>ANS</u>: Assume $A \in \mathbb{C}^{m \times n}$ and $x \in \mathbb{C}^n$. Then

$$||Ax||_{\infty} = \max_{i} |(Ax)_{i}| = \max_{i} |\sum_{j} a_{ij}x_{j}| = \max_{i} \sum_{j} |a_{ij}||x_{j}| \le ||x||_{\infty} \max_{i} \sum_{j} |a_{ij}|$$

So $\frac{||Ax||_{\infty}}{||x||_{\infty}} \leq \max_{i} \sum_{j} |a_{ij}|$ for all $x \neq 0$. Now let k be such that $\max_{i} \sum_{j} |a_{ij}| = \sum_{j} |a_{kj}|$. If there is more than one such k choose the minimum. We can then write $a_{kj} = r_j e^{i\theta_j}$ for some real number $r_j \geq 0$ and $0 \leq \theta_j < 2\pi$. Note $|a_{kj}| = |r_j e^{i\theta_j}| = |r_j| |e^{i\theta_j}| = |r_j| = r_j$. Define $\tilde{x} \in \mathbb{C}^n$ by $\tilde{x}_j = e^{-i\theta_j}$ for $j = 1, \ldots, n$. Notice that is A were a real matrix then we would have $\tilde{x}_j = \pm 1 = e^{-i(0,\pi)}$. Then $\|\tilde{x}\|_{\infty} = 1$ and

$$|\sum_{j} a_{kj} \tilde{x}_{j}| = |\sum_{j} r_{j} e^{i\theta_{j}} e^{-i\theta_{j}}| = |\sum_{j} r_{j}| = \sum_{j} r_{j} = \sum_{j} |a_{kj}|.$$

Finally,

$$||Ax||_{\infty} = \sup_{x \neq 0} \frac{||Ax||_{\infty}}{||x||_{\infty}} \le \max_{i} \sum_{j} |a_{ij}| = \sum_{j} |a_{kj}| = \frac{||A\tilde{x}||_{\infty}}{||\tilde{x}||_{\infty}} \le \sup_{x \neq 0} \frac{||Ax||_{\infty}}{||x||_{\infty}} = ||Ax||_{\infty}$$

Thus, $||Ax||_{\infty} = \max_{i} \sum_{j} |a_{ij}|$, the maximum absolute row sum of A.

6. Consider the 2-point BVP

$$\begin{cases} -y'' + (4x^2 + 2)y = 2x(1 + 2x^2) \\ y(0) = 1, \ y(1) = 1 + e \end{cases}$$

The exact solution is $y(x) = x + e^{x^2}$. Write a MATLAB function M-file to solve the problem using the **4th** order centered compact FD scheme

$$-D_{+}D_{-}\left(1-\frac{h^{2}}{12}c_{i}\right)u_{i}+c_{i}u_{i}=\left(1+\frac{h^{2}}{12}D_{+}D_{-}\right)f_{i}.$$

Use meshsize $h = 1/2^p$, where p is a positive integer. Your code should use your M-files **trilu** and **trilu_solve**. For p = 1 : 4, plot the exact solution (y(x) vs. x) and the numerical solution $(u_i \text{ vs. } x_i)$, including the boundary points. The 4 plots should appear separately in one figure, with axes labeled and a title for each indicating p. Investigate **subplot** in MATLAB for how to have multiple plots in a single figure window. For p = 1 : 20 present a table with the following data - column 1: h; column 2: $||u_h - y_h||_{\infty}$; column 3: $||u_h - y_h||_{\infty}/h^4$; column 4: cpu time; column 5: (cpu time)/m, where h = 1/(m + 1). Discuss the trends in each column. Also, compare the accuracy for each h with the results of the 2nd order code from HW #1. How do the computational times compare? Include a copy of your code.

<u>ANS</u>: Writing out the discretization gives

$$\frac{-(1-\frac{h^2}{12}c_{i-1})u_{i-1} + (2+\frac{5h^2}{6}c_i)u_i - (1-\frac{h^2}{12}c_{i+1})u_{i+1}}{h^2} = f_i + \frac{(f_{i-1}-2f_i+f_{i+1})}{12}$$

Here is the code for the first part of the problem, followed by a listing of the M-file function bvp_solve4 . The latter requires the M-files trilu and trilu_solve from problem 7 (hw #1).

```
xx=0:0.01:1;xx=xx';
yy=xx+exp(xx.^2);
c='4.*x.^2+2'; f='2*x.*(1+2*x.^2)';
clf;
for p=1:4
    [x,u]=bvp_solve4(2^p-1,0,1,1,1+exp(1),c,f);
    \max(abs(u-(x+exp(x.^2))))
    subplot(2,2,p),plot(xx,yy,x,u,'*'),grid
    axis('tight'),xlabel('x'),ylabel('y'),title(['p=',num2str(p)])
end
function [xv,uv,stime]=bvp_solve4(m,a,b,ya,yb,c,f)
%
h=(b-a)/(m+1);
xv=a:h:b; xv=xv';
fv=zeros(m+2,1);
cv=zeros(m+2,1);
```

```
%
x=xv;
cfv=eval(c);
fv=eval(f);
%
% setup tridiagonal matrix and rhs
%
av=(2+(5/6)*h^2*cfv(2:m+1))/(h^2);
bv=zeros(m,1); bv(2:m) =-(1-(h<sup>2</sup>/12)*cfv(2:m ))/(h<sup>2</sup>); bv(1)=0;
cv=zeros(m,1); cv(1:m-1)=-(1-(h<sup>2</sup>/12)*cfv(3:m+1))/(h<sup>2</sup>); cv(m)=0;
fv=fv(2:m+1)+(1/12)*(fv(1:m)-2*fv(2:m+1)+fv(3:m+2));
%
% BC adjustment
%
fv(1)=fv(1)+(1-(h^2/12)*cfv(1) )*ya/(h*h);
fv(m)=fv(m)+(1-(h^2/12)*cfv(m+2))*yb/(h*h);
%
% solve tridiagonal system; collect cpu time
%
tic;
[alpha,beta]=trilu(av,bv,cv);
uv=trilu_solve(alpha,beta,cv,fv);
stime=toc;
uv=[ya;uv;yb];
```

Here is the graph for p = 1, 2, 3 and 4.

Next we solve the BVP with $m = 2^p - 1$ for p = 1, ..., 20. Here is the code:

```
c='4*x.^2+2'; f='2*x.*(1+2*x.^2)';
clf;
h=zeros(20,1); m=zeros(20,1);
times=zeros(20,1);
err_inf=zeros(20,1);
for p=1:20
    [x,u,stime]=bvp_solve4(2^p-1,0,1,1,1+exp(1),c,f);
    h(p)=1/(2^p);
    m(p)=2^p-1;
    times(p)=stime;
    y=x+exp(x.^2);
    err_inf(p)=max(abs(u-y));
end
format short e
disp(' ')
disp(' h inf_err err/h<sup>4</sup> cputime cputime/m ')
disp(' ------')
disp(' ')
disp([h err_inf err_inf./h.^4 times times./m])
```

The results are:

h	inf_err	err/h^4	cputime	cputime/m
5.0000e-01	1.2852e-02	2.0563e-01	9.2100e-04	9.2100e-04
2.5000e-01	9.7605e-04	2.4987e-01	1.9500e-04	6.5000e-05
1.2500e-01	6.3927e-05	2.6185e-01	1.3600e-04	1.9429e-05
6.2500e-02	4.0888e-06	2.6796e-01	1.3100e-04	8.7333e-06
3.1250e-02	2.5615e-07	2.6859e-01	1.5300e-04	4.9355e-06
1.5625e-02	1.6019e-08	2.6875e-01	2.1600e-04	3.4286e-06
7.8125e-03	1.0013e-09	2.6878e-01	2.5800e-03	2.0315e-05
3.9062e-03	6.1728e-11	2.6512e-01	6.3200e-04	2.4784e-06
1.9531e-03	1.0814e-12	7.4310e-02	1.0260e-03	2.0078e-06
9.7656e-04	1.3562e-11	1.4911e+01	2.2850e-03	2.2336e-06
4.8828e-04	5.5336e-11	9.7347e+02	4.4010e-03	2.1500e-06
2.4414e-04	2.1187e-10	5.9635e+04	8.8300e-03	2.1563e-06
1.2207e-04	8.7924e-10	3.9597e+06	1.6935e-02	2.0675e-06
6.1035e-05	1.2362e-09	8.9078e+07	3.5043e-02	2.1390e-06
3.0518e-05	2.3403e-09	2.6982e+09	6.8585e-02	2.0931e-06
1.5259e-05	1.3832e-09	2.5516e+10	1.3560e-01	2.0692e-06
7.6294e-06	1.3652e-08	4.0293e+12	2.6766e-01	2.0421e-06
3.8147e-06	4.3051e-07	2.0330e+15	5.3457e-01	2.0392e-06

1.9073e-06	1.3555e-07	1.0242e+16	1.0638e+00	2.0291e-06
9.5367e-07	7.0937e-07	8.5757e+17	2.1305e+00	2.0318e-06

We can see from the err/h^4 column that the expected $O(h^4)$ error is observed until $h \approx 3.9062e - 3$ since err/h^4 rapidly approaches a constant. But then we lose accuracy. Why? Roundoff error begins to dominate, as well as the conditioning of the matrix! Note, however, that the cputime stills scales linearly with m as evidenced by the cputime/m column.

Comparing with the second order method of HW #1 we see that the cpu timeS for the solvers are close. However, for moderate p the fourth order solution is clearly superior. For example, the error is 6.1728e - 1 for h = 3.9062e - 03, while for the second order method with the same h the error is 5.4521e - 06.

Note: I have only timed the linear solver portion of the code.