1. (3.1-Trefethen $\left.\xi^{\mathcal{G}} \mathrm{Bau}\right)$ Prove that if W is an arbitrary nonsingular matrix, the function $\|\cdot\|_{W}$ defined by $\|x\|_{W}=\|W x\|$ is a vector norm.
ANS: We need to show
(i) $\|x\|_{W} \geq 0,\|x\|_{W}=0 \Leftrightarrow x=0$

Given any $x,\|x\|_{W}=\|W x\| \geq 0$ since $\|\cdot\| \geq 0$. Let $y=W x$, and note since W is nonsingular $y=0 \Leftrightarrow x=0$. Then $\|x\|_{W}=\|y\|=0 \Leftrightarrow y=0 \Leftrightarrow x=0$.
(ii) $\|\alpha x\|_{W}=|\alpha|\|x\|_{W}$
$\|\alpha x\|_{W}=\|W(\alpha x)\|=\|\alpha W x\|=|\alpha|\|W x\|$, since this is true for the $\|\cdot\|$ norm. Thus, $\|\alpha x\|_{W}=|\alpha|\|W x\|=|\alpha|\|x\|_{W}$.
(iii) $\|x+y\|_{W} \leq\|x\|_{W}+\|y\|_{W}$ $\|x+y\|_{W}=\|W(x+y)\|=\|W x+W y\| \leq\|W x\|+\|W y\|$, since $\|u+v\| \leq\|u\|+\|v\|$ for any u, v. Thus, $\|x+y\|_{W} \leq\|W x\|+\|W y\|=\|x\|_{W}+\|y\|_{W}$.
2. (3.2-Trefethen $\S B a u)$ Let $\|\cdot\|$ denote any norm on \mathbb{C}^{m} and also the induced matrix norm on $\mathbb{C}^{m \times m}$. Show that $\rho(A) \leq\|A\|$, where $\rho(A)$ is the spectral radius of A, i.e., the largest absolute value $|\lambda|$ of an eigenvalue λ of A.
ANS: First note that for any $x,\|A x\| \leq\|A\|\|x\|$ since this is a property of any induced matrix norm. Now, let (λ, x) be any e-pair of A, i.e., $A x=\lambda x$.Then

$$
|\lambda|\|x\|=\|\lambda x\|=\|A x\| \leq\|A\|\|x\| \quad \Rightarrow \quad|\lambda| \leq\|A\| .
$$

Note we divided by $\|x\| \neq 0$ since x is and e-vector, so we must have $x \neq 0$. Thus $|\lambda| \leq\|A\|$, and taking the sup over all λ on the left-handside (in fact a max since their are only a finite number of e-values), and noting the the right-handside is independent of λ gives the result.
3. (3.3-Trefethen $\mathcal{B} B a u)$ Vector and matrix p-norms are related by various inequalities, often involving the dimensions m or n. For each of the following, verify the inequality and give an example of a nonzero vector or matrix (for general m, n) for which equality is achieved. In this problem x is a m-vector and A is a $m \times n$ matrix.
(a) $\|x\|_{\infty} \leq\|x\|_{2}$,
(b) $\|x\|_{2} \leq \sqrt{m}\|x\|_{\infty}$,
(c) $\|A\|_{\infty} \leq \sqrt{n}\|A\|_{2}$,
(d) $\|A\|_{2} \leq \sqrt{m}\|A\|_{\infty}$.

ANS:
(a) $\|x\|_{\infty}=\max _{i}\left|x_{i}\right|=\max _{i}\left(\left|x_{i}\right|^{2}\right)^{1 / 2} \leq\left(\sum_{i=1}^{m}\left|x_{i}\right|^{2}\right)^{1 / 2}=\|x\|_{2}$. Equality is achieved for $x=e_{k}, k=1, \ldots, m$, where e_{k} is one of the standard basis vectors for \mathbb{C}^{m}.
(b) $\|x\|_{2}=\left(\sum_{i=1}^{m}\left|x_{i}\right|^{2}\right)^{1 / 2} \leq\left(\sum_{i=1}^{m} \max _{i}\left|x_{i}\right|^{2}\right)^{1 / 2}=\left(m\|x\|_{\infty}^{2}\right)^{1 / 2}=\sqrt{m}\|x\|_{\infty}$. For equality take $x=(1,1, \ldots, 1)^{T} \in \mathbb{C}^{m}$. Then $\|x\|_{\infty}=1$ and $\|x\|_{2}=\sqrt{m}$.
(c) We have

$$
\begin{aligned}
\|A\|_{\infty} & =\sup _{x \neq 0} \frac{\|A x\|_{\infty}}{\|x\|_{\infty}} \\
& \leq \sup _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{\infty}} \quad \text { using (a) in the numerator } \\
& \leq \sup _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2} / \sqrt{n}} \quad \text { using (b) in the denominator, and noting } x \in \mathbb{C}^{n} \\
& =\sqrt{n}\|A\|_{2}
\end{aligned}
$$

For equality, let $A \in \mathbb{C}^{m \times n}$ be the matrix whose first row is all ones, and zeros elsewhere. Clearly $\|A\|_{\infty}=n$. Now, $A^{*} A$ is an $n \times n$ matrix whose entries are all equal to one (check!) and its rank is 1 . So 0 is an e-value of $A^{*} A$ of multiplicity $n-1$. What is the remaining e-value? It is $\lambda_{n}=n$, which is easily seen to be the case since $x=(1,1, \ldots, 1)^{T} \in \mathbb{C}^{n}$ is a corresponding e-vector (check!). Thus $\|A\|_{2}=\sqrt{\rho\left(A^{*} A\right)}=\sqrt{n}$. So we have $\|A\|_{\infty}=n=\sqrt{n} \sqrt{n}=\sqrt{n}\|A\|_{2}$.
(d) We have

$$
\begin{aligned}
\|A\|_{2} & =\sup _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}} \\
& \leq \sup _{x \neq 0} \frac{\sqrt{m}\|A x\|_{\infty}}{\|x\|_{2}} \quad \text { using (b) in the numerator, and noting } A x \in \mathbb{C}^{m} \\
& \leq \sup _{x \neq 0} \frac{\sqrt{m}\|A x\|_{\infty}}{\|x\|_{\infty}} \quad \text { using (a) in the denominator } \\
& =\sqrt{m}\|A\|_{\infty}
\end{aligned}
$$

For equality, let $A \in \mathbb{C}^{m \times n}$ be the matrix whose first column is all ones, and zeros elsewhere. Clearly $\|A\|_{\infty}=1$. Now, $A^{*} A$ is an $n \times n$ diagonal matrix whose entries are all equal to zero, except for the $(1,1)$ entry, which is equal to m (check!). Thus, $\|A\|_{2}=\sqrt{\rho\left(A^{*} A\right)}=\sqrt{m}$. So we have $\|A\|_{2}=\sqrt{m}=\sqrt{m} * 1=\sqrt{m}\|A\|_{\infty}$.
4. Prove that given a vector norm $\|x\|$, the formula $\|A\|=\sup _{x \neq 0} \frac{\|A x\|}{\|x\|}$ defines a matrix norm for a square matrix A. Recall, this is referred to as the induced matrix norm.
ANS: Suppose $A \in \mathbb{C}^{m \times m}$. We need to show:
(i) $\|A\| \geq 0$, and $\|A\|=0$ only if $A=0$.
$\|A\| \geq 0$ since it is the supremum of the ratio of $\|x\|,\|A x\| \geq 0$. Now suppose $\|A\|=0$ but $A \neq 0$. Since $A \neq 0$ there exists an $x \neq 0$ such that $A x=y \neq 0$. For example, if $a_{k} \neq 0$ where a_{k} is the $k^{t h}$ column of A (and there must be one since $A \neq 0$) let $x=e_{k}$. Then $y=a_{k}$ and $\|A x\| /\|x\|=\|y\| /\|x\|>0$, hence so is the suprmum over all $x \neq 0$. Contradiction. So $A=0$.
(ii) $\|A+B\| \leq\|A\|+\|B\|$.

We have $\|x+y\| \leq\|x\|+\|y\|$ for any $x, y \in \mathbb{C}^{m}$. Then

$$
\begin{aligned}
\|A+B\| & =\sup _{x \neq 0} \frac{\|(A+B) x\|}{\|x\|}=\sup _{x \neq 0} \frac{\|A x+B x\|}{\|x\|} \\
& \leq \sup _{x \neq 0} \frac{\|A x\|+\|B x\|}{\|x\|} \\
& =\sup _{x \neq 0} \frac{\|A x\|}{\|x\|}+\sup _{x \neq 0} \frac{\|B x\|}{\|x\|} \\
& =\|A\|+\|B\| .
\end{aligned}
$$

(iii) $\|\alpha A\|=|\alpha|\|A\|$.

We have $\|\alpha x\|=|\alpha|\|x\|$ for any $x \in \mathbb{C}^{m}, \alpha \in \mathbb{C}$. Then

$$
\begin{aligned}
\|\alpha A\| & =\sup _{x \neq 0} \frac{\|\alpha A x\|}{\|x\|}=\sup _{x \neq 0} \frac{|\alpha|\|A x\|}{\|x\|} \\
& =\sup _{x \neq 0} \frac{\alpha\|A x\|}{\|x\|}=\alpha \sup _{x \neq 0} \frac{\|A x\|}{\|x\|} \\
& =|\alpha|\|A\| .
\end{aligned}
$$

5. Prove that $\|A\|_{\infty}=\max _{i} \sum_{j}\left|a_{i j}\right|$, the maximum absolute row sum of the matrix A.

ANS: Assume $A \in \mathbb{C}^{m \times n}$ and $x \in \mathbb{C}^{n}$. Then

$$
\|A x\|_{\infty}=\max _{i}\left|(A x)_{i}\right|=\max _{i}\left|\sum_{j} a_{i j} x_{j}\right|=\max _{i} \sum_{j}\left|a _ { i j } \left\|x_{j}\left|\leq\|x\|_{\infty} \max _{i} \sum_{j}\right| a_{i j} \mid .\right.\right.
$$

So $\frac{\|A x\|_{\infty}}{\|x\|_{\infty}} \leq \max _{i} \sum_{j}\left|a_{i j}\right|$ for all $x \neq 0$. Now let k be such that $\max _{i} \sum_{j}\left|a_{i j}\right|=\sum_{j}\left|a_{k j}\right|$. If there is more than one such k choose the minimum. We can then write $a_{k j}=r_{j} e^{i \theta_{j}}$ for some real number $r_{j} \geq 0$ and $0 \leq \theta_{j}<2 \pi$. Note $\left|a_{k j}\right|=\left|r_{j} e^{i \theta_{j}}\right|=\left|r_{j}\right|\left|e^{i \theta_{j}}\right|=\left|r_{j}\right|=r_{j}$. Define $\tilde{x} \in \mathbb{C}^{n}$ by $\tilde{x}_{j}=e^{-i \theta_{j}}$ for $j=1, \ldots, n$. Notice that is A were a real matrix then we would have $\tilde{x}_{j}= \pm 1=e^{-i(0, \pi)}$. Then $\|\tilde{x}\|_{\infty}=1$ and

$$
\left|\sum_{j} a_{k j} \tilde{x}_{j}\right|=\left|\sum_{j} r_{j} e^{i \theta_{j}} e^{-i \theta_{j}}\right|=\left|\sum_{j} r_{j}\right|=\sum_{j} r_{j}=\sum_{j}\left|a_{k j}\right| .
$$

Finally,

$$
\|A x\|_{\infty}=\sup _{x \neq 0} \frac{\|A x\|_{\infty}}{\|x\|_{\infty}} \leq \max _{i} \sum_{j}\left|a_{i j}\right|=\sum_{j}\left|a_{k j}\right|=\frac{\|A \tilde{x}\|_{\infty}}{\|\tilde{x}\|_{\infty}} \leq \sup _{x \neq 0} \frac{\|A x\|_{\infty}}{\|x\|_{\infty}}=\|A x\|_{\infty}
$$

Thus, $\|A x\|_{\infty}=\max _{i} \sum_{j}\left|a_{i j}\right|$, the maximum absolute row sum of A.
6. Consider the 2-point BVP

$$
\left\{\begin{array}{l}
-y^{\prime \prime}+\left(4 x^{2}+2\right) y=2 x\left(1+2 x^{2}\right) \\
y(0)=1, y(1)=1+e
\end{array}\right.
$$

The exact solution is $y(x)=x+e^{x^{2}}$. Write a MATLAB function M-file to solve the problem using the $\mathbf{4}$ th order centered compact FD scheme

$$
-D_{+} D_{-}\left(1-\frac{h^{2}}{12} c_{i}\right) u_{i}+c_{i} u_{i}=\left(1+\frac{h^{2}}{12} D_{+} D_{-}\right) f_{i}
$$

Use meshsize $h=1 / 2^{p}$, where p is a positive integer. Your code should use your M-files trilu and trilu_solve. For $p=1: 4$, plot the exact solution $(y(x)$ vs. $x)$ and the numerical solution $\left(u_{i}\right.$ vs. $\left.x_{i}\right)$, including the boundary points. The 4 plots should appear separately in one figure, with axes labeled and a title for each indicating p. Investigate subplot in MATLAB for how to have multiple plots in a single figure window. For $p=1: 20$ present a table with the following data - column 1: h; column 2: $\left\|u_{h}-y_{h}\right\|_{\infty}$; column 3: $\left\|u_{h}-y_{h}\right\|_{\infty} / h^{4}$; column 4: cpu time; column 5: $($ cpu time $) / m$, where $h=1 /(m+1)$. Discuss the trends in each column. Also, compare the accuracy for each h with the results of the 2 nd order code from HW \#1. How do the computational times compare? Include a copy of your code.
ANS: Writing out the discretization gives

$$
\frac{-\left(1-\frac{h^{2}}{12} c_{i-1}\right) u_{i-1}+\left(2+\frac{5 h^{2}}{6} c_{i}\right) u_{i}-\left(1-\frac{h^{2}}{12} c_{i+1}\right) u_{i+1}}{h^{2}}=f_{i}+\frac{\left(f_{i-1}-2 f_{i}+f_{i+1}\right)}{12} .
$$

Here is the code for the first part of the problem, followed by a listing of the M-file function bvp_solve4. The latter requires the M-files trilu and trilu_solve from problem 7 (hw \#1).

```
xx=0:0.01:1;xx=xx';
yy=xx+exp(xx.^2);
c='4.*x.^2+2'; f='2*x.*(1+2*x.^2)';
clf;
for p=1:4
    [x,u]=bvp_solve4(2^p-1,0,1,1,1+exp(1),c,f);
    max(abs(u-(x+exp(x.^2))))
    subplot(2,2,p),plot(xx,yy,x,u,'*'),grid
    axis('tight'),xlabel('x'),ylabel('y'),title(['p=',num2str(p)])
end
function [xv,uv,stime]=bvp_solve4(m,a,b,ya,yb,c,f)
%
h=(b-a)/(m+1);
xv=a:h:b; xv=xv';
fv=zeros(m+2,1);
cv=zeros(m+2,1);
```

```
%
x=xv;
cfv=eval(c);
fv=eval(f);
%
% setup tridiagonal matrix and rhs
%
av=(2+(5/6)*h^2*cfv (2:m+1))/(h^2);
bv=zeros(m,1); bv(2:m) =-(1-(h^2/12)*cfv(2:m ))/(h^2); bv(1)=0;
cv=zeros(m,1); cv(1:m-1)=-(1-(h^2/12)*cfv(3:m+1))/(h^2); cv(m)=0;
fv=fv(2:m+1)+(1/12)*(fv(1:m)-2*fv(2:m+1)+fv(3:m+2));
%
% BC adjustment
%
fv(1)=fv(1)+(1-(h^2/12)*cfv(1) )*ya/(h*h);
fv(m)=fv(m)+(1-(h^2/12)*cfv(m+2))*yb/(h*h);
%
% solve tridiagonal system; collect cpu time
%
tic;
[alpha,beta]=trilu(av,bv,cv);
uv=trilu_solve(alpha,beta,cv,fv);
stime=toc;
uv=[ya;uv;yb];
```

Here is the graph for $p=1,2,3$ and 4.

Next we solve the BVP with $m=2^{p}-1$ for $p=1, \ldots, 20$. Here is the code:

```
c='4*x.^2+2'; f='2*x.*(1+2*x.^2)';
clf;
h=zeros(20,1); m=zeros(20,1);
times=zeros(20,1);
err_inf=zeros(20,1);
for p=1:20
    [x,u,stime]=bvp_solve4(2^p-1,0,1,1,1+exp(1),c,f);
    h(p)=1/(2^p);
    m(p)=2^p-1;
    times(p)=stime;
    y=x+exp(x.^2);
    err_inf(p)=max(abs(u-y));
end
format short e
disp(' ')
disp(' h inf_err err/h^4 cputime cputime/m ')
disp(' -----------------------------------------------------------------------)
disp(' ')
disp([h err_inf err_inf./h.^4 times times./m])
```

The results are:

h	inf_err	err/h~4	cputime	cputime/m
$5.0000 \mathrm{e}-01$	$1.2852 \mathrm{e}-02$	$2.0563 \mathrm{e}-01$	$9.2100 \mathrm{e}-04$	$9.2100 \mathrm{e}-04$
$2.5000 \mathrm{e}-01$	$9.7605 \mathrm{e}-04$	$2.4987 \mathrm{e}-01$	$1.9500 \mathrm{e}-04$	$6.5000 \mathrm{e}-05$
$1.2500 \mathrm{e}-01$	$6.3927 \mathrm{e}-05$	$2.6185 \mathrm{e}-01$	$1.3600 \mathrm{e}-04$	$1.9429 \mathrm{e}-05$
$6.2500 \mathrm{e}-02$	$4.0888 \mathrm{e}-06$	$2.6796 \mathrm{e}-01$	$1.3100 \mathrm{e}-04$	$8.7333 \mathrm{e}-06$
$3.1250 \mathrm{e}-02$	$2.5615 \mathrm{e}-07$	$2.6859 \mathrm{e}-01$	$1.5300 \mathrm{e}-04$	$4.9355 \mathrm{e}-06$
$1.5625 \mathrm{e}-02$	$1.6019 \mathrm{e}-08$	$2.6875 \mathrm{e}-01$	$2.1600 \mathrm{e}-04$	3.4286e-06
$7.8125 \mathrm{e}-03$	$1.0013 \mathrm{e}-09$	$2.6878 \mathrm{e}-01$	$2.5800 \mathrm{e}-03$	$2.0315 \mathrm{e}-05$
$3.9062 \mathrm{e}-03$	$6.1728 \mathrm{e}-11$	$2.6512 \mathrm{e}-01$	$6.3200 \mathrm{e}-04$	$2.4784 \mathrm{e}-06$
$1.9531 \mathrm{e}-03$	$1.0814 \mathrm{e}-12$	$7.4310 \mathrm{e}-02$	$1.0260 \mathrm{e}-03$	$2.0078 \mathrm{e}-06$
$9.7656 \mathrm{e}-04$	$1.3562 \mathrm{e}-11$	$1.4911 \mathrm{e}+01$	$2.2850 \mathrm{e}-03$	$2.2336 \mathrm{e}-06$
$4.8828 \mathrm{e}-04$	5.5336e-11	$9.7347 \mathrm{e}+02$	$4.4010 \mathrm{e}-03$	$2.1500 \mathrm{e}-06$
$2.4414 \mathrm{e}-04$	$2.1187 \mathrm{e}-10$	$5.9635 \mathrm{e}+04$	8.8300e-03	$2.1563 \mathrm{e}-06$
$1.2207 \mathrm{e}-04$	$8.7924 \mathrm{e}-10$	$3.9597 \mathrm{e}+06$	$1.6935 \mathrm{e}-02$	$2.0675 \mathrm{e}-06$
$6.1035 \mathrm{e}-05$	$1.2362 \mathrm{e}-09$	$8.9078 \mathrm{e}+07$	3.5043e-02	$2.1390 \mathrm{e}-06$
$3.0518 \mathrm{e}-05$	$2.3403 \mathrm{e}-09$	$2.6982 \mathrm{e}+09$	$6.8585 \mathrm{e}-02$	$2.0931 \mathrm{e}-06$
$1.5259 \mathrm{e}-05$	$1.3832 \mathrm{e}-09$	$2.5516 \mathrm{e}+10$	$1.3560 \mathrm{e}-01$	$2.0692 \mathrm{e}-06$
7.6294e-06	$1.3652 \mathrm{e}-08$	$4.0293 \mathrm{e}+12$	$2.6766 \mathrm{e}-01$	$2.0421 \mathrm{e}-06$
$3.8147 \mathrm{e}-06$	$4.3051 \mathrm{e}-07$	$2.0330 \mathrm{e}+15$	$5.3457 \mathrm{e}-01$	$2.0392 \mathrm{e}-06$

$1.9073 \mathrm{e}-06$	$1.3555 \mathrm{e}-07$	$1.0242 \mathrm{e}+16$	$1.0638 \mathrm{e}+00$	$2.0291 \mathrm{e}-06$
$9.5367 \mathrm{e}-07$	$7.0937 \mathrm{e}-07$	$8.5757 \mathrm{e}+17$	$2.1305 \mathrm{e}+00$	$2.0318 \mathrm{e}-06$

We can see from the err $/ h^{4}$ column that the expected $O\left(h^{4}\right)$ error is observed until $h \approx$ $3.9062 e-3$ since err $/ h^{4}$ rapidly approaches a constant. But then we lose accuracy. Why? Roundoff error begins to dominate, as well as the conditioning of the matrix! Note, however, that the cputime stills scales linearly with m as evidenced by the cputime/ m column.
Comparing with the second order method of HW \#1 we see that the cpu timeS for the solvers are close. However, for moderate p the fourth order solution is clearly superior. For example, the error is $6.1728 e-1$ for $h=3.9062 e-03$, while for the second order method with the same h the error is $5.4521 e-06$.
Note: I have only timed the linear solver portion of the code.

