
MATH 552 Scientific Computing II Spring 2016

Homework Set 4 - SOLUTIONS

1. For N even define a discrete grid xh for [0, 2π] by xk = k∗h where h = 2π/N and 0 ≤ k ≤ N−1.
Show
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for j = 1, 2, . . . , N
2
− 1. This shows that on such a grid, wave numbers greater than N

2
are

aliased to wave numbers below N
2

.

ANS: There are a number of ways to show this result, one of which is by first noting that

eiNxk = eiN
2πk
N = ei2πk = cos (2kπ) + i sin (2kπ) = 1.

Multiplying on the right by this expression gives
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An alternative would be to simply subtract the two expressions, and using a trig identity to
arrive at 0.



2. Given a real vector v = (v1, . . . , vN−1)
T the Discrete Sine Transform of v is given by v̂ = P−1v,

where P is an (N−1)×(N−1) matrix with Pi,j = (2/
√

2N) sin (ijπ/N) for i, j = 1, 2, . . . , N−1.

We showed that v̂ could be computed using an FFT, implemented by the M-file dst.m. For a
randomly chosen v and values of N given by

N = [64, 96, 128, 256, 368, 512, 1024, 1874, 2048, 3477, 4096]

compute v̂ by direct matrix-vector multiplication and also by dst.m. Using tic and roc in
MATLAB, plot the cpu time on a semilogy plot, and discuss the results. To obtain a reasonably
accurate timing, execute each method 500 times and then take the average.

ANS: Below is the graph. For both multiplication by P and using the DST, except for N
small, the DST is clearly faster. In the case of small N , we can see that the DST is actually
slower. This is most likely due to the fact that for small N matrix-vector multiplication is
extremely fast because of the presence of L1 cache, a small amount of memory close to the
arithmetic units with low latency, i.e. data moves in and out very rapidly.
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Let us try to get a clearer picture of the timings. Below is a graph of timings with the time
divided by N2 in the case of multiplication by P case, and divided by N logN in the DST
case. Focusing on the larger values of N , on this log scale the multiplication by P is nearly
a constant, confirming the expected N2 scaling. For the DST it is not as clear because the
optimality of the DST varies with N , the best case being when N is a power of 2, which is
quite apparent in the results.

Here is a copy of the code:
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N = [64 96 128 256 368 512 1024 1874 2048 3477 4096]’;

time_P = zeros(length(N),1);

time_dst = zeros(length(N),1);

num_trials = 500;

for i = 1:length(N)

n = N(i)

v = rand(n-1,1);

[P,x] = createP(n);

tic

for j = 1:num_trials

v = P*v;

end

time_P(i) = toc/num_trials;

tic

for j = 1:num_trials

v = dst(v);

end

time_dst(i) = toc/num_trials;

end



3. Consider the 2-point one-dimensional BVP{
−u′′ + u = (π2 sin πx− 2π cosπx)ex

u(0) = u(1) = 0 .

The exact solution is u(x) = ex sin (πx).

(a) Write a MATLAB script to solve the problem by the FFT method, using the Discrete
Sine Transform as implemented by dst.m applied to the 2nd order centered FD scheme,
assuming σ ≥ 0 is a constant,

−D2vi + σvi = fi,

where D2 = D+D−. Assume a meshsize h = 1/2p, where p is a positive integer. For
p = 1 : 4, plot the exact solution (u(x) vs. x) and the numerical solution (vi vs. xi),
including the boundary points. The 4 plots should appear separately in one figure, with
axes labeled and a title for each indicating p. Investigate subplot in MATLAB for how
to have multiple plots in a single figure window.

(b) For p = 1 : 15 present a table with the following data - column 1: h; column 2: ‖uh − vh‖∞;
column 3: ‖uh − vh‖∞/h2, where h = 1/n. Discuss the trends in each column. Include a
copy of your code.

ANS: Here is the graph for part (a):
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The table for part (b) is below. We see clear second order accuracy up to ≈ n = 2(12) = 4096.
After that roundoff error begins to be significant and we lose the convergence to a constant in
column 3.



h inf_error inf_error/h^2

-----------------------------------------

5.0000e-01 1.5930e-01 6.3722e-01

2.5000e-01 5.5870e-02 8.9391e-01

1.2500e-01 1.3945e-02 8.9248e-01

6.2500e-02 3.5776e-03 9.1587e-01

3.1250e-02 8.9442e-04 9.1589e-01

1.5625e-02 2.2361e-04 9.1589e-01

7.8125e-03 5.5926e-05 9.1630e-01

3.9062e-03 1.3982e-05 9.1630e-01

1.9531e-03 3.4954e-06 9.1630e-01

9.7656e-04 8.7386e-07 9.1630e-01

4.8828e-04 2.1843e-07 9.1617e-01

2.4414e-04 5.4640e-08 9.1671e-01

1.2207e-04 1.4360e-08 9.6370e-01

6.1035e-05 6.4970e-09 1.7440e+00

3.0518e-05 7.6755e-09 8.2415e+00

Here is a copy of the code:

n = [1:15]’;

hvals = zeros(length(n),1);

err = zeros(length(n),1);

for i = 1:length(n)

N = 2^(n(i));

h = 1/N; hvals(i) = h;

xh = h*(0:N)’;

lam = 2*(1-cos(xh(2:N)*pi))/(h^2); % eigenvalues of A_h

uh = exp(xh).*sin(pi*xh); % true soln u on xh grid

fh = exp(xh).*(pi^2*sin(pi*xh)-2*pi*cos(pi*xh)); % rhs

fh_int = fh(2:N); % rhs is f evaluated at N-1 interior pts

ftil = dst(fh_int); % dst of rhs

vtil = ftil./(lam+1); % soln in Fourier space by simple division

vh = dst(vtil); % transform back to physical space

vh = [0;vh;0]; % set BCs

err(i) = max(abs(uh-vh));

if (i < 5)

subplot(2,2,i)

plot(xh,uh,’-’,xh,vh,’*’)

legend(’uh’,’vh’,’location’,’northwest’)



title([’ N: ’,num2str(N)]);

end

end

format short e

disp(’ ’)

disp(’ h inf_error inf_error/h^2’)

disp(’-----------------------------------------’)

disp([hvals err err./(hvals.^2)])


