Spring 2016

Homework Set 4
Due Friday, 8 April 2016

1. For N even define a discrete grid x_{h} for $[0,2 \pi]$ by $x_{k}=k * h$ where $h=2 \pi / N$ and $0 \leq k \leq N-1$. Show

$$
e^{i\left(\frac{N}{2}+j\right) x_{k}}=e^{-i\left(\frac{N}{2}-j\right) x_{k}}
$$

for $j=1,2, \ldots, \frac{N}{2}-1$. This shows that on such a grid, wave numbers greater than $\frac{N}{2}$ are aliased to wave numbers below $\frac{N}{2}$.
2. Given a real vector $v=\left(v_{1}, \ldots, v_{N-1}\right)^{T}$ the Discrete Sine Transform of v is given by $\hat{v}=P^{-1} v$, where P is an $(N-1) \times(N-1)$ matrix with $P_{i, j}=(2 / \sqrt{2 N}) \sin (i j \pi / N)$ for $i, j=1,2, \ldots, N-1$.
We showed that \hat{v} could be computed using an FFT, implemented by the M-file dst.m. For a randomly chosen v and values of N given by

$$
N=[64,96,128,256,368,512,1024,1874,2048,3477,4096]
$$

compute \hat{v} by direct matrix-vector multiplication and also by dst.m. Using tic and roc in MATLAB, plot the cpu time on a semilogy plot, and discuss the results. To obtain a reasonably accurate timing, execute each method 500 times and then take the average.
3. Consider the 2-point one-dimensional BVP

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+u=\left(\pi^{2} \sin \pi x-2 \pi \cos \pi x\right) e^{x} \\
u(0)=u(1)=0
\end{array}\right.
$$

The exact solution is $u(x)=e^{x} \sin (\pi x)$.
(a) Write a MATLAB script to solve the problem by the FFT method, using the Discrete Sine Transform as implemented by dst.m applied to the 2nd order centered FD scheme, assuming $\sigma \geq 0$ is a constant,

$$
-D^{2} v_{i}+\sigma v_{i}=f_{i},
$$

where $D^{2}=D_{+} D_{-}$. Assume a meshsize $h=1 / 2^{p}$, where p is a positive integer. For $p=1: 4$, plot the exact solution $(u(x)$ vs. $x)$ and the numerical solution (v_{i} vs. x_{i}), including the boundary points. The 4 plots should appear separately in one figure, with axes labeled and a title for each indicating p. Investigate subplot in MATLAB for how to have multiple plots in a single figure window.
(b) For $p=1: 15$ present a table with the following data - column 1: h; column 2: $\left\|u_{h}-v_{h}\right\|_{\infty}$; column 3: $\left\|u_{h}-v_{h}\right\|_{\infty} / h^{2}$, where $h=1 / n$. Discuss the trends in each column. Include a copy of your code.

