Homework Set 3 - SOLUTIONS

1. Spectrum of Skew-Hermitian Matrices: An $n \times n$ complex matrix A is said to be skewHermitian if $A^{*}=\bar{A}^{T}=-A$. If A is real, this reduces to $A^{T}=-A$.
Show that the eigenvalues of a skew-Hermitian matrix are pure imaginary, i.e. $\bar{\lambda}=-\lambda$.
ANS: Suppose $A x=\lambda x$ for $x \neq 0$, i.e. (λ, x) is an eigenpair of A. Then $\langle A x, x\rangle=$ $\langle\lambda x, x\rangle=\lambda\langle x, x\rangle$, or $\lambda=\langle A x, x\rangle /\langle x, x\rangle$, and

$$
\bar{\lambda}=\frac{\overline{\langle A x, x\rangle}}{\overline{\langle x, x\rangle}}=\frac{\langle x, A x\rangle}{\langle x, x\rangle}=\frac{\left\langle A^{*} x, x\right\rangle}{\langle x, x\rangle}=\frac{\langle-A x, x\rangle}{\langle x, x\rangle}=-\frac{\langle A x, x\rangle}{\langle x, x\rangle}=-\lambda .
$$

2. Consider the discrete eigenproblem for $-D^{2}$, the $O\left(h^{2}\right)$ approximation to $-d / d x^{2}$. To this end, choose $N>0$, let $h=1 / N$ and $x_{i}=i * h$ for $i=0,1, \ldots, N$. Note we now have $N+1$ grid points with $x_{0}=0$ and $x_{N}=1$. So we seek e-pairs which satisfy

$$
\left(-D^{2} v\right)_{i}=\frac{-v_{i-1}+2 v_{i}-v_{i+1}}{h^{2}}=\lambda v_{i} \quad \text { for } \quad i=1,2, \ldots, N-1,
$$

with $v_{0}=v_{N}=0$. In matrix form,

$$
\frac{1}{h^{2}}\left(\begin{array}{ccccc}
2 & -1 & & & \\
-1 & 2 & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & \ddots & -1 \\
& & & -1 & 2
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{N-2} \\
v_{N-1}
\end{array}\right)=\lambda\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{N-2} \\
v_{N-1}
\end{array}\right)
$$

Show that $\left(\lambda_{k}, v_{k}\right)$ is an e-pair for $k=1,2, \ldots, N-1$ where $\lambda_{k}=2(1-\cos k \pi h) / h^{2}$ and v_{k} is the vector with components $\left(v_{k}\right)_{i}=\sin i k \pi h$. Hint: Use trig identities, and note that $\sin 0 k \pi h=\sin N k \pi h=0$.
.ANS:
Noting that $\sin 0 k \pi h=\sin N k \pi h=0$. Fix a $k, k=1, \ldots, N-1$. For $i=1, \ldots, N-1$,

$$
\begin{aligned}
\frac{-v_{k, i-1}+2 v_{k, i}-v_{k, i+1}}{h^{2}} & =\frac{-\sin (i-1) k \pi h+2 \sin i k \pi h-\sin (i+1) k \pi h}{h^{2}} \\
& =\frac{-(\sin i k \pi h \cos k \pi h-\cos i k \pi h \sin k \pi h)+2 \sin i k \pi h-(\sin i k \pi h \cos k \pi h+\cos i k \pi h \sin k \pi h)}{h^{2}} \\
& =\frac{-2 \sin i k \pi h \cos k \pi h+2 \sin i k \pi h}{h^{2}} \\
& =\frac{2(1-\cos k \pi h)}{h^{2}} \sin i k \pi h \\
& =\lambda_{k} \sin i k \pi h . \\
& =\lambda_{k} v_{k, i} .
\end{aligned}
$$

So we have $A v_{k}=\lambda_{k} v_{k}$ for $k=1, \ldots, N-1$, where A is the matrix representing $-D^{2}$. Thus, $\left(\lambda_{k}, v_{k}\right)$ are e-pairs for $k=1, \ldots, N-1$.
3. Given a real vector $v=\left(v_{1}, \ldots, v_{N-1}\right)^{T}$ the Discrete Sine Transform of v is given by $\hat{v}=P^{-1} v$, where P is an $(N-1) \times(N-1)$ matrix with $P_{i, j}=(2 / \sqrt{2 N}) \sin (i j \pi / N)$ for $i, j=1,2, \ldots, N-1$. Show $P=P^{T}$ and $P^{-1}=P$.
ANS: (a) First, $P_{i, j}=(2 / \sqrt{2 N}) \sin (i j \pi / N)=(2 / \sqrt{2 N}) \sin (j i \pi / N)=P_{j, i} \quad \Rightarrow \quad P=$ P^{T}.

To show $P^{-1}=P$ we compute P^{2}. Suppose $l \neq j$, then

$$
\begin{aligned}
& \left(P^{2}\right)_{l, j}=\sum_{k=1}^{N-1} \frac{2}{\sqrt{2 N}} \sin (l k \pi / N) \frac{2}{\sqrt{2 N}} \sin (k j \pi / N) \\
& =\frac{1}{N} \sum_{k=1}^{N-1} 2 \sin (l k \pi / N) \sin (k j \pi / N) \\
& =\frac{1}{N} \sum_{k=1}^{N-1}[\cos (k(l-j) \pi / N)-\cos (k(l+j) \pi / N)] \\
& =\frac{1}{2 N}\left[\sum_{k=1}^{N-1} 2 \cos (k(l-j) \pi / N)-\sum_{k=1}^{N-1} 2 \cos (k(l+j) \pi / N)\right] \\
& =\frac{1}{2 N}\left[\sum_{k=1}^{N-1}\left(e^{i(k(l-j) \pi / N)}+e^{-i(k(l-j) \pi / N)}\right)-\sum_{k=1}^{N-1}\left(e^{i(k(l+j) \pi / N)}+e^{-i(k(l+j) \pi / N)}\right)\right] \\
& =\frac{1}{2 N}\left[\sum_{k=1}^{N-1}\left[\left(e^{\frac{i(l-j) \pi}{N}}\right)^{k}+\left(e^{\frac{-i(l-j) \pi}{N}}\right)^{k}\right]-\sum_{k=1}^{N-1}\left[\left(e^{\frac{i(l+j) \pi}{N}}\right)^{k}+\left(e^{\frac{-i(l+j) \pi}{N}}\right)^{k}\right]\right] \\
& =\frac{1}{2 N}\left[\frac{1-\left(e^{\frac{i(l-j) \pi}{N}}\right)^{N}}{1-e^{\frac{i(l-j) \pi}{N}}}-1+\frac{1-\left(e^{\frac{-i(l-j) \pi}{N}}\right)^{N}}{1-e^{\frac{-i(l-j) \pi}{N}}}-1\right]- \\
& \frac{1}{2 N}\left[\frac{1-\left(e^{\frac{i(l+j) \pi}{N}}\right)^{N}}{1-e^{\frac{i(l+j) \pi}{N}}}-1+\frac{1-\left(e^{\frac{-i(l+j) \pi}{N}}\right)^{N}}{1-e^{\frac{-i(l+j) \pi}{N}}}-1\right] \\
& =\frac{1}{2 N}\left[\left(\frac{1-e^{i(l-j) \pi}}{1-e^{i \frac{(l-j) \pi}{N}}}+\frac{1-e^{-i(l-j) \pi}}{1-e^{-i \frac{(l-j) \pi}{N}}}\right)-\left(\frac{1-e^{i(l+j) \pi}}{1-e^{i \frac{(l+j) \pi}{N}}}+\frac{1-e^{-i(l+j) \pi}}{1-e^{-i \frac{(l+j) \pi}{N}}}\right)\right] \\
& =\frac{1}{2 N}\left[\left(\frac{1-\cos (l-j) \pi}{1-e^{i \frac{(l-j) \pi}{N}}}+\frac{1-\cos (l-j) \pi}{1-e^{-i \frac{(l-j) \pi}{N}}}\right)-\left(\frac{1-e^{i(l+j) \pi}}{1-e^{i \frac{(l+j) \pi}{N}}}+\frac{1-e^{-i(l+j) \pi}}{1-e^{-i \frac{(l+j) \pi}{N}}}\right)\right] .
\end{aligned}
$$

Letting $\theta=(l-j) \pi$, the first term in the brackets above is

$$
\frac{1-\cos \theta}{1-e^{i \frac{\theta}{N}}}+\frac{1-\cos \theta}{1-e^{-i \frac{\theta}{N}}}=(1-\cos \theta) \frac{1-e^{i \frac{\theta}{N}}+1-e^{-i \frac{\theta}{N}}}{\left(1-e^{i \frac{\theta}{N}}\right)\left(1-e^{-i \frac{\theta}{N}}\right)}=(1-\cos \theta) .
$$

A similar calculation shows that the second term is $(1-\cos (l+j) \pi)$. Putting everything together, for $l \neq j$,

$$
\left.\left.\left(P^{2}\right)_{l, j}=\frac{1}{2 N}[(1-\cos (l-j) \pi)-(1-\cos (l+j) \pi)]=\frac{1}{2 N}[\cos (l+j) \pi)-\cos (l-j) \pi\right)\right] .
$$

Since l, j are integers, either $l-j$ and $l+j$ are both even or they are both odd (if $l-j$ is even then $l+j=l-j+(2 j)$ is even, etc.). Thus (finally!), $\left(P^{2}\right)_{l, j}=0$ for $l \neq j$.
If $l=j$ the full derivation above is not valid since once we summed the partial series the denominators in the first term are zero. However, since $1 \leq l, j \leq N-1$ we must have
that $l+j<2 N$, thus the denominators in the second term are never zero. So going back a few steps in the derivation above,

$$
\begin{aligned}
\left(P^{2}\right)_{l, j} & =\frac{1}{2 N}\left[\sum_{k=1}^{N-1} 2 \cos (k(l-j) \pi / N)-\sum_{k=1}^{N-1} 2 \cos (k(l+j) \pi / N)\right] \\
& =\frac{1}{2 N}\left[\sum_{k=1}^{N-1} 2 \cos (k 0 \pi / N)-\sum_{k=1}^{N-1} 2 \cos (k(l+j) \pi / N)\right] \\
& =\frac{1}{2 N}[2(N-1)-(1-\cos ((l+j) \pi)-2)] \\
& =\frac{1}{2 N}[2(N-1)-(1-\cos (2 l \pi)-2)]=\frac{1}{2 N}[2(N-1)-(1-1-2)]=1
\end{aligned}
$$

Thus, $P^{2}=I \quad \Rightarrow \quad P^{-1}=P$. There are most likely more concise ways to show this result.
4. Boundary Value Problems and Boundary Layers: Consider the two-point boundary value problem

$$
\left\{\begin{array}{l}
-\epsilon u^{\prime \prime}+u=2 x+1,0<x<1 \\
u(0)=u(1)=0
\end{array}\right.
$$

where $\epsilon>0$ is a given parameter. The exact solution is given by

$$
u(x)=2 x+1-\frac{\sinh \frac{1-x}{\sqrt{\epsilon}}+3 \sinh \frac{x}{\sqrt{\epsilon}}}{\sinh \frac{1}{\sqrt{\epsilon}}}
$$

(a) Using your tridiagonal solver compute the solution for $\epsilon=10^{-1}$ and $N=1 / h=4^{n}$ for $n=1,2,3,4$. Using the subplot command, plot the exact solution and the computed solution for each N on the same page, i.e. 4 plots on the same page. Also, compute the ratios $\|u-v\|_{\infty} / h^{2}$ for each $h=1 / N$. Discuss the results. Include a copy of your code.
(b) Repeat the exercise above for $\epsilon=10^{-3}$. Again, discuss the results. What has changed, i.e. what is the effect of a smaller ϵ ?

ANS: Here is the output for $\epsilon=0.1$:

h	inf_error	inf_error/h^2
---------------------------------------01		
$2.5000 \mathrm{e}-01$	$2.8851 \mathrm{e}-02$	$4.6161 \mathrm{e}-01$
$6.2500 \mathrm{e}-02$	$1.9913 \mathrm{e}-03$	$5.0977 \mathrm{e}-01$
$1.5625 \mathrm{e}-02$	$1.2518 \mathrm{e}-04$	$5.1273 \mathrm{e}-01$
$3.9062 \mathrm{e}-03$	$7.8260 \mathrm{e}-06$	$5.1288 \mathrm{e}-01$

along with the graph

We can see from the last column in the table that the numbers are converging, so we are achieving $O\left(h^{2}\right)$ accuracy.
Now for $\epsilon=0.001$ the results are:

h	inf_error	inf_error/h^2
$2.5000 \mathrm{e}-01$	4.5421e-02	$7.2673 \mathrm{e}-01$
6.2500e-02	$1.0771 \mathrm{e}-01$	$2.7573 e+01$
$1.5625 \mathrm{e}-02$	$1.0982 \mathrm{e}-02$	$4.4983 e+01$
$3.9062 \mathrm{e}-03$	$7.0064 \mathrm{e}-04$	$4.5917 \mathrm{e}+01$

and the graph

We can see in the graphs that the solution is now quite steep at each bounderies. Specifically, since we are using equi-spaced points, the scheme has some trouble resolving these regions. For example, for $N=16$ we see there are only 2 points in the boundary layer region.
This is also indicated in the table. While the last column appears to be converging to a constant, the convergence is not as clear as was for the $\epsilon=0.1$ case above.
Here is a copy of the code:

```
n = [1:4]';
dispvars = zeros(length(n),3);
epsilon = 10^(-3);
sqrteps = sqrt(epsilon);
denom = sinh(1/sqrteps);
```

```
figure(1)
for i = 1:length(n)
    N = 4^(n(i));
    h = 1/N;
    xh = h*(0:N)';
    u_h = 2*xh+1 - ...
        (sinh((1-xh)/sqrteps)+3*sinh(xh/sqrteps))/denom; % true soln u
    f_h = 2*xh+1; % -epsilon*u'' + u = f
    a = epsilon*(2*ones(N-1,1)/(h^2))+1; % create a, b & c
    b = epsilon*(-ones(N-1,1)/(h^2));
    c = epsilon*(-ones(N-1,1)/(h^2));
    ftil = f_h(2:N); % rhs is f evaluated at n-1 interior pts
    v_h = trisolve(a,b,c,ftil); % solve
    v_h = [0;v_h;0]; % set BCs u(0)=u(1)=0
    dispvars(i,1) = h;
    dispvars(i,2) = max(abs(v_h-u_h));
    dispvars(i,3) = dispvars(i,2)/h^2;
    subplot(2,2,i)
    plot(xh,u_h,'-',xh,v_h,'*')
    title(['eps=0.1 ' num2str(N)]);
end
save2pdf('hw3_p4b.pdf',1,300)
format short e
disp(' ')
disp(' h inf_error inf_error/h^2')
disp('-------------------------------------------------
disp(dispvars)
```

