Homework Set 3 - SOLUTIONS

1. Spectrum of Skew-Hermitian Matrices: An $n \times n$ complex matrix A is said to be skew-Hermitian if $A^* = \overline{A}^T = -A$. If A is real, this reduces to $A^T = -A$.

Show that the eigenvalues of a skew-Hermitian matrix are pure imaginary, i.e. $\bar{\lambda} = -\lambda$.

<u>ANS</u>: Suppose $Ax = \lambda x$ for $x \neq 0$, i.e. (λ, x) is an eigenpair of A. Then $\langle Ax, x \rangle = \langle \lambda x, x \rangle = \lambda \langle x, x \rangle$, or $\lambda = \langle Ax, x \rangle / \langle x, x \rangle$, and

$$\overline{\lambda} = \frac{\langle Ax, x \rangle}{\overline{\langle x, x \rangle}} = \frac{\langle x, Ax \rangle}{\langle x, x \rangle} = \frac{\langle A^*x, x \rangle}{\langle x, x \rangle} = \frac{\langle -Ax, x \rangle}{\langle x, x \rangle} = -\frac{\langle Ax, x \rangle}{\langle x, x \rangle} = -\lambda.$$

2. Consider the discrete eigenproblem for $-D^2$, the $O(h^2)$ approximation to $-d/dx^2$. To this end, choose N > 0, let h = 1/N and $x_i = i * h$ for i = 0, 1, ..., N. Note we now have N + 1 grid points with $x_0 = 0$ and $x_N = 1$. So we seek e-pairs which satisfy

$$(-D^2v)_i = \frac{-v_{i-1} + 2v_i - v_{i+1}}{h^2} = \lambda v_i \quad \text{for} \quad i = 1, 2, \dots, N-1,$$

with $v_0 = v_N = 0$. In matrix form,

$$\frac{1}{h^2} \begin{pmatrix} 2 & -1 & & \\ -1 & 2 & -1 & & \\ & \ddots & \ddots & \ddots & \\ & & \ddots & \ddots & -1 \\ & & & -1 & 2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_{N-2} \\ v_{N-1} \end{pmatrix} = \lambda \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_{N-2} \\ v_{N-1} \end{pmatrix}$$

Show that (λ_k, v_k) is an e-pair for k = 1, 2, ..., N - 1 where $\lambda_k = 2(1 - \cos k\pi h)/h^2$ and v_k is the vector with components $(v_k)_i = \sin ik\pi h$. Hint: Use trig identities, and note that $\sin 0k\pi h = \sin Nk\pi h = 0$.

.<u>ANS</u>:

Noting that $\sin 0k\pi h = \sin Nk\pi h = 0$. Fix a $k, k = 1, \dots, N-1$. For $i = 1, \dots, N-1$,

$$\frac{-v_{k,i-1} + 2v_{k,i} - v_{k,i+1}}{h^2} = \frac{-\sin(i-1)k\pi h + 2\sin ik\pi h - \sin(i+1)k\pi h}{h^2}$$

$$= \frac{-(\sin ik\pi h \cos k\pi h - \cos ik\pi h \sin k\pi h) + 2\sin ik\pi h - (\sin ik\pi h \cos k\pi h + \cos ik\pi h \sin k\pi h)}{h^2}$$

$$= \frac{-2\sin ik\pi h \cos k\pi h + 2\sin ik\pi h}{h^2}$$

$$= \frac{2(1 - \cos k\pi h)}{h^2} \sin ik\pi h$$

$$= \lambda_k \sin ik\pi h.$$

$$= \lambda_k v_{k,i}.$$

So we have $Av_k = \lambda_k v_k$ for k = 1, ..., N - 1, where A is the matrix representing $-D^2$. Thus, (λ_k, v_k) are e-pairs for k = 1, ..., N - 1. 3. Given a real vector $v = (v_1, \ldots, v_{N-1})^T$ the Discrete Sine Transform of v is given by $\hat{v} = P^{-1}v$, where P is an $(N-1) \times (N-1)$ matrix with $P_{i,j} = (2/\sqrt{2N}) \sin(ij\pi/N)$ for $i, j = 1, 2, \ldots, N-1$. Show $P = P^T$ and $P^{-1} = P$. <u>ANS</u>: (a) First, $P_{i,j} = (2/\sqrt{2N}) \sin(ij\pi/N) = (2/\sqrt{2N}) \sin(ji\pi/N) = P_{j,i} \Rightarrow P = P^T$.

To show $P^{-1} = P$ we compute P^2 . Suppose $l \neq j$, then

$$\begin{split} (P^2)_{l,j} &= \sum_{k=1}^{N-1} \frac{2}{\sqrt{2N}} \sin(lk\pi/N) \frac{2}{\sqrt{2N}} \sin(kj\pi/N) \\ &= \frac{1}{N} \sum_{k=1}^{N-1} 2\sin(lk\pi/N) \sin(kj\pi/N) \\ &= \frac{1}{N} \sum_{k=1}^{N-1} 2\cos(k(l-j)\pi/N) - \cos(k(l+j)\pi/N)] \\ &= \frac{1}{N} \left[\sum_{k=1}^{N-1} 2\cos(k(l-j)\pi/N) - \sum_{k=1}^{N-1} 2\cos(k(l+j)\pi/N) \right] \\ &= \frac{1}{2N} \left[\sum_{k=1}^{N-1} (e^{i(k(l-j)\pi/N)} + e^{-i(k(l-j)\pi/N)}) - \sum_{k=1}^{N-1} (e^{i(k(l+j)\pi/N)} + e^{-i(k(l+j)\pi/N)})) \right] \\ &= \frac{1}{2N} \left[\sum_{k=1}^{N-1} (e^{i(k(l-j)\pi/N)} + e^{-i(k(l-j)\pi/N)}) - \sum_{k=1}^{N-1} (e^{i(k(l+j)\pi/N)} + e^{-i(k(l+j)\pi/N)})) \right] \\ &= \frac{1}{2N} \left[\sum_{k=1}^{N-1} [(e^{\frac{i(l-j)\pi}{N}})^k + (e^{\frac{-i(l-j)\pi}{N}})^k] - \sum_{k=1}^{N-1} [(e^{\frac{i(l+j)\pi}{N}})^k + (e^{\frac{-i(l+j)\pi}{N}})^k] \right] \\ &= \frac{1}{2N} \left[\frac{1 - (e^{\frac{i(l+j)\pi}{N}})^N}{1 - e^{\frac{i(l+j)\pi}{N}}} - 1 + \frac{1 - (e^{\frac{-i(l+j)\pi}{N}})^N}{1 - e^{\frac{-i(l+j)\pi}{N}}} - 1 \right] \\ &= \frac{1}{2N} \left[\frac{1 - (e^{i(l-j)\pi}}{1 - e^{i(\frac{l+j)\pi}{N}}} + \frac{1 - e^{-i(l-j)\pi}}{1 - e^{-i(\frac{l+j)\pi}{N}}}) - \left(\frac{1 - e^{i(l+j)\pi}}{1 - e^{-i(l+j)\pi}} + \frac{1 - e^{-i(l+j)\pi}}{1 - e^{-i(l+j)\pi}} \right) \right] \\ &= \frac{1}{2N} \left[\left(\frac{1 - \cos(l-j)\pi}{1 - e^{i(\frac{l+j)\pi}{N}}} + \frac{1 - \cos(l-j)\pi}{1 - e^{-i(\frac{l+j}{N}}} \right) - \left(\frac{1 - e^{i(l+j)\pi}}{1 - e^{i(\frac{l+j)\pi}{N}}} + \frac{1 - e^{-i(l+j)\pi}}{1 - e^{-i(\frac{l+j}{N}}} \right) \right] \end{aligned}$$

Letting $\theta = (l - j)\pi$, the first term in the brackets above is

$$\frac{1-\cos\theta}{1-e^{i\frac{\theta}{N}}} + \frac{1-\cos\theta}{1-e^{-i\frac{\theta}{N}}} = (1-\cos\theta)\frac{1-e^{i\frac{\theta}{N}}+1-e^{-i\frac{\theta}{N}}}{(1-e^{i\frac{\theta}{N}})(1-e^{-i\frac{\theta}{N}})} = (1-\cos\theta).$$

A similar calculation shows that the second term is $(1 - \cos(l + j)\pi)$. Putting everything together, for $l \neq j$,

$$(P^2)_{l,j} = \frac{1}{2N} \left[(1 - \cos((l-j)\pi)) - (1 - \cos((l+j)\pi)) \right] = \frac{1}{2N} \left[\cos((l+j)\pi) - \cos((l-j)\pi) \right].$$

Since l, j are integers, either l - j and l + j are **both** even or they are **both** odd (if l - j is even then l + j = l - j + (2j) is even, etc.). Thus (finally!), $(P^2)_{l,j} = 0$ for $l \neq j$.

If l = j the full derivation above is not valid since once we summed the partial series the denominators in the first term are zero. However, since $1 \le l, j \le N - 1$ we must have

that l + j < 2N, thus the denominators in the second term are never zero. So going back a few steps in the derivation above,

$$(P^{2})_{l,j} = \frac{1}{2N} \left[\sum_{k=1}^{N-1} 2\cos\left(k(l-j)\pi/N\right) - \sum_{k=1}^{N-1} 2\cos\left(k(l+j)\pi/N\right) \right]$$

$$= \frac{1}{2N} \left[\sum_{k=1}^{N-1} 2\cos\left(k0\pi/N\right) - \sum_{k=1}^{N-1} 2\cos\left(k(l+j)\pi/N\right) \right]$$

$$= \frac{1}{2N} \left[2(N-1) - (1 - \cos\left((l+j)\pi\right) - 2) \right]$$

$$= \frac{1}{2N} \left[2(N-1) - (1 - \cos\left(2l\pi\right) - 2) \right] = \frac{1}{2N} \left[2(N-1) - (1 - 1 - 2) \right] = 1$$

Thus, $P^2 = I \implies P^{-1} = P$. There are most likely more concise ways to show this result.

4. Boundary Value Problems and Boundary Layers: Consider the two-point boundary value problem

$$\left\{ \begin{array}{l} -\epsilon u'' + u = 2x + 1, 0 < x < 1 \\ u(0) = u(1) = 0 \end{array} \right.$$

where $\epsilon > 0$ is a given parameter. The exact solution is given by

$$u(x) = 2x + 1 - \frac{\sinh\frac{1-x}{\sqrt{\epsilon}} + 3\sinh\frac{x}{\sqrt{\epsilon}}}{\sinh\frac{1}{\sqrt{\epsilon}}}$$

- (a) Using your tridiagonal solver compute the solution for $\epsilon = 10^{-1}$ and $N = 1/h = 4^n$ for n = 1, 2, 3, 4. Using the *subplot* command, plot the exact solution and the computed solution for each N on the same page, i.e. 4 plots on the same page. Also, compute the ratios $||u v||_{\infty}/h^2$ for each h = 1/N. Discuss the results. Include a copy of your code.
- (b) Repeat the exercise above for $\epsilon = 10^{-3}$. Again, discuss the results. What has changed, i.e. what is the effect of a smaller ϵ ?

<u>ANS</u>: Here is the output for $\epsilon = 0.1$:

h	inf_error	inf_error/h^2
2.5000e-01	2.8851e-02	4.6161e-01
6.2500e-02	1.9913e-03	5.0977e-01
1.5625e-02	1.2518e-04	5.1273e-01
3.9062e-03	7.8260e-06	5.1288e-01

along with the graph

We can see from the last column in the table that the numbers are converging, so we are achieving $O(h^2)$ accuracy.

Now for $\epsilon = 0.001$ the results are:

	h	inf_error	inf_error/h^2
-	2.5000e-01	4.5421e-02	7.2673e-01
	6.2500e-02	1.0771e-01	2.7573e+01
	1.5625e-02	1.0982e-02	4.4983e+01
	3.9062e-03	7.0064e-04	4.5917e+01

and the graph

We can see in the graphs that the solution is now quite steep at each bounderies. Specifically, since we are using equi-spaced points, the scheme has some trouble resolving these regions. For example, for N = 16 we see there are only 2 points in the boundary layer region.

This is also indicated in the table. While the last column appears to be converging to a constant, the convergence is not as clear as was for the $\epsilon = 0.1$ case above.

Here is a copy of the code:

```
n = [1:4]';
dispvars = zeros(length(n),3);
epsilon = 10<sup>(-3)</sup>;
sqrteps = sqrt(epsilon);
denom = sinh(1/sqrteps);
```

```
figure(1)
for i = 1:length(n)
   N = 4^{(n(i))};
   h = 1/N;
   xh = h*(0:N)';
   u_h = 2*xh+1 - ...
         (sinh((1-xh)/sqrteps)+3*sinh(xh/sqrteps))/denom; % true soln u
                                     % -epsilon*u'' + u = f
   f_h = 2*xh+1;
   a = epsilon*(2*ones(N-1,1)/(h^2))+1; % create a, b & c
   b = epsilon*(-ones(N-1,1)/(h^2));
   c = epsilon*(-ones(N-1,1)/(h^2));
   ftil = f_h(2:N);
                     \% rhs is f evaluated at n-1 interior pts
   v_h = trisolve(a,b,c,ftil); % solve
   v_h = [0; v_h; 0];
                              % set BCs u(0)=u(1)=0
   dispvars(i,1) = h;
   dispvars(i,2) = max(abs(v_h-u_h));
   dispvars(i,3) = dispvars(i,2)/h^2;
   subplot(2,2,i)
   plot(xh,u_h,'-',xh,v_h,'*')
   title(['eps=0.1 ' num2str(N)]);
end
save2pdf('hw3_p4b.pdf',1,300)
format short e
disp(' ')
           h
                   inf_error inf_error/h^2')
 disp('
 disp('-----')
 disp(dispvars)
```