
MATH 552 Scientific Computing II Spring 2016

Homework Set 3 - SOLUTIONS

1. Spectrum of Skew-Hermitian Matrices: An n × n complex matrix A is said to be skew-
Hermitian if A∗ = ĀT = −A. If A is real, this reduces to AT = −A.

Show that the eigenvalues of a skew-Hermitian matrix are pure imaginary, i.e. λ̄ = −λ.

ANS: Suppose Ax = λx for x 6= 0, i.e. (λ, x) is an eigenpair of A. Then 〈Ax, x〉 =
〈λx, x〉 = λ〈x, x〉, or λ = 〈Ax, x〉/〈x, x〉, and

λ =
〈Ax, x〉
〈x, x〉

=
〈x,Ax〉
〈x, x〉

=
〈A∗x, x〉
〈x, x〉

=
〈−Ax, x〉
〈x, x〉

= −〈Ax, x〉
〈x, x〉

= −λ.



2. Consider the discrete eigenproblem for −D2, the O(h2) approximation to −d/dx2. To this
end, choose N > 0, let h = 1/N and xi = i ∗ h for i = 0, 1, . . . , N . Note we now have
N + 1 grid points with x0 = 0 and xN = 1. So we seek e-pairs which satisfy

(−D2v)i =
−vi−1 + 2vi − vi+1

h2
= λvi for i = 1, 2, . . . , N − 1,

with v0 = vN = 0. In matrix form,

1

h2


2 −1
−1 2 −1

. . .
. . .

. . .
. . .

. . . −1
−1 2




v1
v2
...

vN−2
vN−1

 = λ


v1
v2
...

vN−2
vN−1


Show that (λk, vk) is an e-pair for k = 1, 2, . . . , N − 1 where λk = 2(1 − cos kπh)/h2 and
vk is the vector with components (vk)i = sin ikπh. Hint: Use trig identities, and note that
sin 0kπh = sinNkπh = 0.

.ANS:

Noting that sin 0kπh = sinNkπh = 0. Fix a k, k = 1, . . . , N − 1. For i = 1, . . . , N − 1,

−vk,i−1 + 2vk,i − vk,i+1

h2
=
− sin (i− 1)kπh+ 2 sin ikπh− sin (i+ 1)kπh

h2

= −(sin ikπh cos kπh−cos ikπh sin kπh)+2 sin ikπh−(sin ikπh cos kπh+cos ikπh sin kπh)
h2

=
−2 sin ikπh cos kπh+ 2 sin ikπh

h2

=
2(1− cos kπh)

h2
sin ikπh

= λk sin ikπh.

= λkvk,i.

So we have Avk = λkvk for k = 1, . . . , N − 1, where A is the matrix representing −D2.
Thus, (λk, vk) are e-pairs for k = 1, . . . , N − 1.



3. Given a real vector v = (v1, . . . , vN−1)
T the Discrete Sine Transform of v is given by

v̂ = P−1v, where P is an (N − 1) × (N − 1) matrix with Pi,j = (2/
√

2N) sin (ijπ/N) for
i, j = 1, 2, . . . , N − 1. Show P = P T and P−1 = P .

ANS: (a) First, Pi,j = (2/
√

2N) sin (ijπ/N) = (2/
√

2N) sin (jiπ/N) = Pj,i ⇒ P =
P T .

To show P−1 = P we compute P 2. Suppose l 6= j, then

(P 2)l,j =
N−1∑
k=1

2√
2N

sin (lkπ/N)
2√
2N

sin (kjπ/N)

=
1

N

N−1∑
k=1

2 sin (lkπ/N) sin (kjπ/N)

=
1

N

N−1∑
k=1

[cos (k(l − j)π/N)− cos (k(l + j)π/N)]

=
1

2N

[
N−1∑
k=1

2 cos (k(l − j)π/N)−
N−1∑
k=1

2 cos (k(l + j)π/N)

]

=
1

2N

[
N−1∑
k=1

(ei(k(l−j)π/N) + e−i(k(l−j)π/N))−
N−1∑
k=1

(ei(k(l+j)π/N) + e−i(k(l+j)π/N))

]

=
1

2N

[
N−1∑
k=1

[(e
i(l−j)π
N )k + (e

−i(l−j)π
N )k]−

N−1∑
k=1

[(e
i(l+j)π
N )k + (e

−i(l+j)π
N )k]

]

=
1

2N

[
1− (e

i(l−j)π
N )N

1− e
i(l−j)π
N

− 1 +
1− (e

−i(l−j)π
N )N

1− e
−i(l−j)π

N

− 1

]
−

1

2N

[
1− (e

i(l+j)π
N )N

1− e
i(l+j)π
N

− 1 +
1− (e

−i(l+j)π
N )N

1− e
−i(l+j)π

N

− 1

]

=
1

2N

[(
1− ei(l−j)π

1− ei
(l−j)π
N

+
1− e−i(l−j)π

1− e−i
(l−j)π
N

)
−

(
1− ei(l+j)π

1− ei
(l+j)π
N

+
1− e−i(l+j)π

1− e−i
(l+j)π
N

)]

=
1

2N

[(
1− cos (l − j)π

1− ei
(l−j)π
N

+
1− cos (l − j)π

1− e−i
(l−j)π
N

)
−

(
1− ei(l+j)π

1− ei
(l+j)π
N

+
1− e−i(l+j)π

1− e−i
(l+j)π
N

)]
.

Letting θ = (l − j)π, the first term in the brackets above is

1− cos θ

1− ei
θ
N

+
1− cos θ

1− e−i
θ
N

= (1− cos θ)
1− ei

θ
N + 1− e−i

θ
N

(1− ei
θ
N )(1− e−i

θ
N )

= (1− cos θ) .

A similar calculation shows that the second term is (1− cos (l + j)π). Putting everything
together, for l 6= j,

(P 2)l,j =
1

2N
[(1− cos (l − j)π)− (1− cos (l + j)π)] =

1

2N
[cos (l + j)π)− cos (l − j)π)] .

Since l, j are integers, either l − j and l + j are both even or they are both odd (if l − j
is even then l + j = l − j + (2j) is even, etc.). Thus (finally!), (P 2)l,j = 0 for l 6= j.

If l = j the full derivation above is not valid since once we summed the partial series the
denominators in the first term are zero. However, since 1 ≤ l, j ≤ N − 1 we must have



that l + j < 2N , thus the denominators in the second term are never zero. So going back
a few steps in the derivation above,

(P 2)l,j =
1

2N

[
N−1∑
k=1

2 cos (k(l − j)π/N)−
N−1∑
k=1

2 cos (k(l + j)π/N)

]

=
1

2N

[
N−1∑
k=1

2 cos (k0π/N)−
N−1∑
k=1

2 cos (k(l + j)π/N)

]

=
1

2N
[2(N − 1)− (1− cos ((l + j)π)− 2)]

=
1

2N
[2(N − 1)− (1− cos (2lπ)− 2)] =

1

2N
[2(N − 1)− (1− 1− 2)] = 1

Thus, P 2 = I ⇒ P−1 = P . There are most likely more concise ways to show this
result.



4. Boundary Value Problems and Boundary Layers: Consider the two-point boundary value
problem {

−εu′′ + u = 2x+ 1, 0 < x < 1
u(0) = u(1) = 0

where ε > 0 is a given parameter. The exact solution is given by

u(x) = 2x+ 1−
sinh 1−x√

ε
+ 3 sinh x√

ε

sinh 1√
ε

(a) Using your tridiagonal solver compute the solution for ε = 10−1 and N = 1/h = 4n for
n = 1, 2, 3, 4. Using the subplot command, plot the exact solution and the computed
solution for each N on the same page, i.e. 4 plots on the same page. Also, compute
the ratios ‖u− v‖∞/h2 for each h = 1/N . Discuss the results. Include a copy of your
code.

(b) Repeat the exercise above for ε = 10−3. Again, discuss the results. What has changed,
i.e. what is the effect of a smaller ε?

ANS: Here is the output for ε = 0.1:

h inf_error inf_error/h^2

-----------------------------------------

2.5000e-01 2.8851e-02 4.6161e-01

6.2500e-02 1.9913e-03 5.0977e-01

1.5625e-02 1.2518e-04 5.1273e-01

3.9062e-03 7.8260e-06 5.1288e-01

along with the graph

0 0.5 1
0

0.5

1

1.5
eps=0.1   4

0 0.5 1
0

0.5

1

1.5
eps=0.1   16

0 0.5 1
0

0.5

1

1.5
eps=0.1   64

0 0.5 1
0

0.5

1

1.5
eps=0.1   256



We can see from the last column in the table that the numbers are converging, so we are
achieving O(h2) accuracy.

Now for ε = 0.001 the results are:

h inf_error inf_error/h^2

-----------------------------------------

2.5000e-01 4.5421e-02 7.2673e-01

6.2500e-02 1.0771e-01 2.7573e+01

1.5625e-02 1.0982e-02 4.4983e+01

3.9062e-03 7.0064e-04 4.5917e+01

and the graph

0 0.5 1
-1

0

1

2

3
eps=0.1   4

0 0.5 1
-1

0

1

2

3
eps=0.1   16

0 0.5 1
-1

0

1

2

3
eps=0.1   64

0 0.5 1
-1

0

1

2

3
eps=0.1   256

We can see in the graphs that the solution is now quite steep at each bounderies. Specifi-
cally, since we are using equi-spaced points, the scheme has some trouble resolving these
regions. For example, for N = 16 we see there are only 2 points in the boundary layer
region.

This is also indicated in the table. While the last column appears to be converging to a
constant, the convergence is not as clear as was for the ε = 0.1 case above.

Here is a copy of the code:

n = [1:4]’;

dispvars = zeros(length(n),3);

epsilon = 10^(-3);

sqrteps = sqrt(epsilon);

denom = sinh(1/sqrteps);



figure(1)

for i = 1:length(n)

N = 4^(n(i));

h = 1/N;

xh = h*(0:N)’;

u_h = 2*xh+1 - ...

(sinh((1-xh)/sqrteps)+3*sinh(xh/sqrteps))/denom; % true soln u

f_h = 2*xh+1; % -epsilon*u’’ + u = f

a = epsilon*(2*ones(N-1,1)/(h^2))+1; % create a, b & c

b = epsilon*(-ones(N-1,1)/(h^2));

c = epsilon*(-ones(N-1,1)/(h^2));

ftil = f_h(2:N); % rhs is f evaluated at n-1 interior pts

v_h = trisolve(a,b,c,ftil); % solve

v_h = [0;v_h;0]; % set BCs u(0)=u(1)=0

dispvars(i,1) = h;

dispvars(i,2) = max(abs(v_h-u_h));

dispvars(i,3) = dispvars(i,2)/h^2;

subplot(2,2,i)

plot(xh,u_h,’-’,xh,v_h,’*’)

title([’eps=0.1 ’ num2str(N)]);

end

save2pdf(’hw3_p4b.pdf’,1,300)

format short e

disp(’ ’)

disp(’ h inf_error inf_error/h^2’)

disp(’-----------------------------------------’)

disp(dispvars)


