1. Spectrum of Skew-Hermitian Matrices: An $n \times n$ complex matrix A is said to be skewHermitian if $A^{*}=\bar{A}^{T}=-A$. If A is real, this reduces to $A^{T}=-A$.
Show that the eigenvalues of a skew-Hermitian matrix are pure imaginary, i.e. $\bar{\lambda}=-\lambda$.
2. Consider the discrete eigenproblem for $-D^{2}$, the $O\left(h^{2}\right)$ approximation to $-d / d x^{2}$. To this end, choose $N>0$, let $h=1 / N$ and $x_{i}=i * h$ for $i=0,1, \ldots, N$. Note we now have $N+1$ grid points with $x_{0}=0$ and $x_{N}=1$. So we seek e-pairs which satisfy

$$
\left(-D^{2} v\right)_{i}=\frac{-v_{i-1}+2 v_{i}-v_{i+1}}{h^{2}}=\lambda v_{i} \quad \text { for } \quad i=1,2, \ldots, N-1,
$$

with $v_{0}=v_{N}=0$. In matrix form,

$$
\frac{1}{h^{2}}\left(\begin{array}{ccccc}
2 & -1 & & & \\
-1 & 2 & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & \ddots & -1 \\
& & & -1 & 2
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{N-2} \\
v_{N-1}
\end{array}\right)=\lambda\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{N-2} \\
v_{N-1}
\end{array}\right)
$$

Show that $\left(\lambda_{k}, v_{k}\right)$ is an e-pair for $k=1,2, \ldots, N-1$ where $\lambda_{k}=2(1-\cos k \pi h) / h^{2}$ and v_{k} is the vector with components $\left(v_{k}\right)_{i}=\sin i k \pi h$. Hint: Use trig identities, and note that $\sin 0 k \pi h=\sin N k \pi h=0$.
3. Given a real vector $v=\left(v_{1}, \ldots, v_{N-1}\right)^{T}$ the Discrete Sine Transform of v is given by $\hat{v}=P^{-1} v$, where P is an $(N-1) \times(N-1)$ matrix with $P_{i, j}=(2 / \sqrt{2 N}) \sin (i j \pi / N)$ for $i, j=1,2, \ldots, N-1$. Show $P=P^{T}$ and $P^{-1}=P$.
4. Boundary Value Problems and Boundary Layers: Consider the two-point boundary value problem

$$
\left\{\begin{array}{l}
-\epsilon u^{\prime \prime}+u=2 x+1,0<x<1 \\
u(0)=u(1)=0
\end{array}\right.
$$

where $\epsilon>0$ is a given parameter. The exact solution is given by

$$
u(x)=2 x+1-\frac{\sinh \frac{1-x}{\sqrt{\epsilon}}+3 \sinh \frac{x}{\sqrt{\epsilon}}}{\sinh \frac{1}{\sqrt{\epsilon}}}
$$

(a) Using your tridiagonal solver compute the solution for $\epsilon=10^{-1}$ and $N=1 / h=4^{n}$ for $n=1,2,3,4$. Using the subplot command, plot the exact solution and the computed solution for each N on the same page, i.e. 4 plots on the same page. Also, compute the ratios $\|u-v\|_{\infty} / h^{2}$ for each $h=1 / N$. Discuss the results. Include a copy of your code.
(b) Repeat the exercise above for $\epsilon=10^{-3}$. Again, discuss the results. What has changed, i.e. what is the effect of a smaller ϵ ?

