Homework Set 2

Due Monday, 22 February

1. Orthogonality of complex exponentials: Consider the complex exponential functions

$$
\phi_{n}(x)=e^{-i\left(\frac{n \pi x}{L}\right)} \quad \text { for } \quad-\infty<n<\infty
$$

Show that

$$
\left\langle\phi_{n}(x), \phi_{m}(x)\right\rangle=\int_{-L}^{L} \phi_{n}(x) \overline{\phi_{m}}(x) d x= \begin{cases}0 & \text { if } n \neq m \\ 2 L & \text { if } n=m\end{cases}
$$

and thus the functions are mutually orthogonal.
2. Show that the second order centered finite difference approximation to $u^{\prime \prime}\left(x_{j}\right)$,

$$
D^{2} u_{j}=\frac{u_{j-1}-2 u_{j}+u_{j+1}}{h^{2}}
$$

satisifes

$$
u^{\prime \prime}\left(x_{j}\right)=D^{2} u_{j}+O\left(h^{2}\right)
$$

using Taylor series approximations. Here $u_{j}=u\left(x_{j}\right)$ and $u_{j \pm 1}=u\left(x_{j \pm 1}\right)$ where $x_{j \pm 1}=x_{j} \pm h$. Derive a concise formula for the $O\left(h^{2}\right)$ error term.
3. Find by hand the eigenvalues and eigenvectors of the following matrices
(a) $\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$
(b) $\left[\begin{array}{ll}0 & 2 \\ 1 & 0\end{array}\right]$
(c) $\left[\begin{array}{rr}2 & -1 \\ -1 & 2\end{array}\right]$
(d) $\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$
4. Write a MATLAB function M-file trisolve.m to solve the linear system $A x=f$ where

$$
A=\left(\begin{array}{ccccc}
a_{1} & c_{1} & & & \\
b_{2} & a_{2} & c_{2} & & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & \ddots & c_{n-1} \\
& & & b_{n} & a_{n}
\end{array}\right)
$$

is a tridiagonal $n \times n$ matrix Assume that no partial pivoting is required. The inputs are the n-vectors a, b, c and f and returns the solution x. Its first line should read:

```
function x = trisolve(a,b,c,f)
```

Test your code with the 5×5 system with $a_{i}=2, b_{i}=-1, c_{i}=-1$, and RHS $f=[1,0,0,0,1]^{T}$. The exact solution is $x=[1,1,1,1,1]^{T}$. Use MATLAB's diary command to save your MATLAB session output showing that your code works properly. Include a copy of both codes.
5. Consider the 2-point BVP

$$
\left\{\begin{array}{l}
-u^{\prime \prime}=-\left(x^{2}+3 x\right) e^{x} \\
u(0)=u(1)=0
\end{array}\right.
$$

(a) Show $u(x)=\left(x^{2}-x\right) e^{x}$ is the exact solution.
(b) Write a MATLAB function M-file to solve the problem using the 2nd order centered FD scheme we discussed in class, $-D^{2} v_{i}=f_{i}$, that utilizes your m-file trisolve.m from problem 3 above. Note that $\sigma=0$ here. Assume a mesh size $h=1 / n$ where $n=2^{p}$ for p a positive integer. For $p=1: 12$ present a table with the following data - column 1: h; column 2: $\left\|u_{h}-v_{h}\right\|_{\infty}$; column 3: $\left\|u_{h}-v_{h}\right\|_{\infty} / h^{2}$; where $h=1 / n$. What does the trend in the third column indicate? Include a copy of your code.

