HW \#1 Solutions

1. Fourier Series and Orthogonality of Sines and Cosines: The Fourier series for $f \in$ $L^{2}[-\pi, \pi]$, given by

$$
f(x)=\frac{a_{0}}{2}+\sum_{k=1}^{\infty} a_{k} \cos k x+b_{k} \sin k x
$$

is an expansion of the function $f(x)$ in the basis of trigonometric functions

$$
\left\{\phi_{0}(x), \phi_{1}(x), \phi_{2}(x), \phi_{3}(x), \phi_{4}(x), \ldots\right\}=\{1, \cos x, \sin x, \cos 2 x, \sin 2 x, \ldots\}
$$

Recall the inner product

$$
\langle f, g\rangle=\int_{-\pi}^{\pi} f(x) g(x) d x
$$

find an expression for $\left\langle\phi_{n}(x), \phi_{m}(x)\right\rangle$ for $m, n \geq 0$. In particular, show that the basis functions are mutually orthogonal by showing that for $n \neq m$ the inner product is zero.

ANS:
Using the identity $\sin a \sin b=\frac{1}{2}(\cos (a-b)-\cos (a+b))$

$$
\begin{aligned}
\langle\sin n x, \sin m x\rangle & =\int_{-\pi}^{\pi} \sin n x \sin m x d x \\
& =\frac{1}{2} \int_{-\pi}^{\pi} \cos (n-m) x-\cos (n+m) x d x \\
& =\frac{1}{2} \begin{cases}\int_{-\pi}^{\pi} 1-1 d x & n=m=0 \\
\int_{-\pi}^{\pi} 1-\cos 2 n x d x & n=m \neq 0 \\
\int_{-\pi}^{\pi} \cos (n-m) x-\cos (n+m) x d x & n \neq m\end{cases} \\
& =\frac{1}{2} \begin{cases}0 & n=m=0 \\
{\left.\left[\begin{array}{ll}
0 \pi-\left[\frac{1}{2 n} \sin 2 n x\right.
\end{array}\right]\right|_{-\pi} ^{\pi}} & n=m \neq 0\end{cases} \\
& =\frac{1}{2} \begin{cases}0 & n=m=0 \\
2 \pi-0 & n=m \neq 0 \\
0-0 & n \neq m\end{cases} \\
& = \begin{cases}0 & n=m=0 \\
\pi & n=m \neq 0 \\
0 & n \neq m\end{cases}
\end{aligned}
$$

Using the identity $\cos a \cos b=\frac{1}{2}(\cos (a-b)+\cos (a+b))$ and following steps similar to those above:

$$
\begin{aligned}
\langle\cos n x, \cos m x\rangle & =\int_{-\pi}^{\pi} \cos n x \cos m x d x \\
& =\frac{1}{2} \int_{-\pi}^{\pi} \cos (n-m) x+\cos (n+m) x d x \\
& = \begin{cases}2 \pi & n=m=0 \\
\pi & n=m \neq 0 \\
0 & n \neq m\end{cases}
\end{aligned}
$$

Using the identity $\sin a \cos b=\frac{1}{2}(\sin (a-b)+\sin (a+b))$. Note below that if $n=$ $m=0$ or $m=0$ and $n>0$ the inner product is easily seen to be 0 . Thus, assuming $m, n>0$

$$
\begin{aligned}
\langle\sin n x, \cos m x\rangle & =\int_{-\pi}^{\pi} \sin n x \cos m x d x \\
& =\frac{1}{2} \int_{-\pi}^{\pi} \sin (n-m) x+\sin (n+m) x d x \\
& = \begin{cases}\int_{-\pi}^{\pi} 0+\sin 2 n x d x \\
-\left.\left[\frac{1}{(n-m)} \cos (n-m) x+\frac{1}{(n+m)} \cos (n+m) x\right]\right|_{-\pi} ^{\pi} & n \neq m\end{cases} \\
& =0
\end{aligned}
$$

2. Separation of Variables: Use separation of variables to find the solution, in the form of an infinite series, of the homogeneous heat conduction problem with Neumann no flux boundary conditions:

$$
\begin{aligned}
\text { PDE: } & \frac{\partial u}{\partial t}=\kappa \frac{\partial^{2} u}{\partial x^{2}}, \quad(0<x<L, t>0) \\
\mathrm{BCs}: & \frac{\partial u}{\partial x}(0, t)=0, \quad \frac{\partial u}{\partial x}(L, t)=0, \quad(t>0) \\
\mathrm{IC}: & u(x, 0)=f(x) \quad(t=0)
\end{aligned}
$$

Proceed as follows:
(a) Assume $u(x, t)=G(t) \phi(x)$ and derive the ODEs satisfied by $\phi(x)$ and $G(t)$.
(b) Solve the ODEs for $\phi(x)$ and $G(t)$, and determine the allowed values for the separation constant λ.
(c) Show that the eigenfunctions of the spatial eigenvalue-eigenfunction problem are mutually orthogonal.
(d) Write the solution in terms of an infinite series with coefficients a_{n}, and derive a formula for the a_{n} in terms of an integral involving the intial condition $u(x, 0)=f(x)$.

ANS: To solve using separation of variables, we proceed as follows:
(a) Letting $u(x, t)=G(t) \phi(x)$ and substituting this expression into the PDE gives

$$
G^{\prime}(t) \phi(x)=\kappa G(t) \phi^{\prime \prime}(x) \quad \text { or } \quad \frac{G^{\prime}(t)}{\kappa G(t)}=\frac{\phi^{\prime \prime}(x)}{\phi(x)}=-\lambda
$$

where λ is the separation constant. Therefore $G(t)$ satisfies the ODE

$$
G^{\prime}(t)=-\lambda \kappa G(t)
$$

and $\phi(x)$ the ODE with BC

$$
\left\{\begin{array}{l}
\phi^{\prime \prime}(x)=-\lambda \phi(x) \\
\phi^{\prime}(0)=\phi^{\prime}(L)=0
\end{array}\right.
$$

(b) The ODE for $G(t)$ has the general solution

$$
G(t)=C e^{-\kappa \lambda t}
$$

while the solution $\phi(x)$ depends on λ :
$\underline{\lambda<\mathbf{0}}$: General solution $\phi(x)=c_{1} \cosh \sqrt{-\lambda} x+c_{2} \sinh \sqrt{-\lambda} x$, and applying BC
$0=\phi^{\prime}(0)=\sqrt{-\lambda}\left(c_{1} \sinh 0+c_{2} \cosh 0\right)=\sqrt{-\lambda}\left(c_{1} * 0+c_{2} * 1\right)=\sqrt{-\lambda} c_{2} \quad \Rightarrow \quad c_{2}=0$,
and

$$
0=\phi^{\prime}(L)=c_{1} \sqrt{-\lambda} \sinh \sqrt{-\lambda} L \quad \Rightarrow \quad c_{1}=0 \text { since } \sinh \sqrt{-\lambda} L \neq 0
$$

Thus for $\lambda<0$ we have only the trivial solution $\phi \equiv 0$.
$\underline{\lambda=\mathbf{0}}$: General solution $\phi(x)=c_{1}+c_{2} x$, and applying BC

$$
0=\phi^{\prime}(0)=\phi^{\prime}(L)=c_{2} \quad \Rightarrow \quad c_{2}=0
$$

Thus for $\lambda=0$ we have $\phi=c_{1}=A_{0}$ where A_{0} is an arbitrary nonzero number, which we can set to 1 .
$\underline{\lambda>0}$: General solution $\phi(x)=c_{1} \cos \sqrt{\lambda} x+c_{2} \sin \sqrt{\lambda} x$, and applying BC $0=\phi^{\prime}(0)=\sqrt{\lambda}\left(-c_{1} \sin 0+c_{2} \cos 0\right)=\sqrt{\lambda}\left(-c_{1} * 0+c_{2} * 1\right)=\sqrt{\lambda} c_{2} \quad \Rightarrow \quad c_{2}=0$, and

$$
0=\phi^{\prime}(L)=-\sqrt{\lambda} c_{1} \sin \sqrt{\lambda} L \quad \Rightarrow \quad c_{1}=0 \text { or } \sqrt{\lambda} L=n \pi \text { for } n=1,2,3, \ldots
$$

Since $c_{1}=0$ gives the trivial solution, we take the latter, and have for $\lambda>0$

$$
\lambda_{n}=\frac{n \pi^{2}}{L}, \quad \phi_{n}(x)=A_{n} \cos \frac{n \pi x}{L} \text { for each } n=1,2,3, \ldots
$$

(c) The eigenfunctions of the spatial eigenvalue-eigenfunction problem are given by

$$
\left\{\phi_{0}, \phi_{1}, \phi_{2}, \ldots\right\}=\left\{1, \cos \frac{\pi x}{L}, \cos \frac{2 \pi x}{L}, \ldots\right\}=\left\{\phi_{n}(x)\right\}_{n=0}^{\infty}
$$

Using the results of problem 2 , we have for $n, m \geq 0$

$$
\begin{aligned}
\left\langle\phi_{n}(x), \phi_{m}(x)\right\rangle & =\int_{0}^{L} \cos \frac{n \pi x}{L} \cos \frac{m \pi x}{L} d x \\
& =\frac{1}{2} \int_{0}^{L} \cos \frac{(n-m) \pi x}{L}+\cos \frac{(n+m) \pi x}{L} d x \\
& = \begin{cases}L & n=m=0 \\
L / 2 & n=m \neq 0 \\
0 & n \neq m\end{cases}
\end{aligned}
$$

showing that when $n \neq m$ that $\left\langle\phi_{n}(x), \phi_{m}(x)\right\rangle=0$, i.e. the set of eigenfunctions $\left\{\phi_{n}(x)\right\}_{n=0}^{\infty}$ is mutually orthogonal.
(d) Using the orthogonality of the ϕ_{n}, we have

$$
u(x, t)=A_{0}+\sum_{n=1}^{\infty} A_{n} e^{-\kappa\left(\frac{n \pi}{L}\right)^{2} t} \cos \frac{n \pi x}{L}
$$

where

$$
A_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x \quad \text { and } \quad A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x
$$

3. Inhomogeneous Boundary Conditions: Consider the 1D heat conduction problem for $u(x, t)$ with fixed temperature boundary conditions:

$$
\begin{aligned}
\text { PDE: } & \frac{\partial u}{\partial t}=\kappa \frac{\partial^{2} u}{\partial x^{2}}, \quad(0<x<L, t>0) \\
\mathrm{BCs}: & u(0, t)=\alpha, \quad u(L, t)=\beta, \quad(t>0) \\
\mathrm{IC}: & u(x, 0)=f(x) \quad(t=0)
\end{aligned}
$$

Let $h(x)=\alpha+(\beta-\alpha) x / L$ and $v(x, t)=u(x, t)-h(x)$. Determine the PDE, BCs and IC that $v(x, t)$ satisfies. Given the solution $v(x, t)$ of the new system, explain the steps that you would go about to solve the original inhomogeneous problem for $u(x, t)$.
ANS: Let $v(x, t)=u(x, t)-h(x)$. Then

$$
\frac{\partial v}{\partial t}=\frac{\partial u}{\partial t} \quad \text { and } \quad \frac{\partial^{2} v}{\partial x^{2}}=\frac{\partial^{2} u}{\partial x^{2}} \quad \text { since } \quad \frac{d}{d t} h(x)=\frac{d^{2}}{d x^{2}} h(x)=0
$$

and note that $h(0)=\alpha$ and $h(L)=\beta$ giving $v(0, t)=v(L, t)=0$. Then the system for $v(x, t)$ is given by

$$
\begin{cases}\frac{\partial v}{\partial t}=\kappa \frac{\partial^{2} v}{\partial x^{2}} & (0<x<L, t>0) \\ v(0, t)=v(L, t)=0 & (t>0) \\ v(x, 0)=u(x, 0)-h(x)=f(x)-h(x)=g(x) & (t=0)\end{cases}
$$

Thus to solve the original system for $u(x, t)$, first solve the system for $v(x, t)$ and one has $u(x, t)=v(x, t)+h(x)$.
4. Self-Adjointness of the Laplacian: Consider the vector space $V=C^{2}([a, b])$, the set of all real-valued functions $f(x)$ defined on the interval $[a, b]$ which are at least two times continuously differentiable. Let the inner product on V be defined in the usual manner, $\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x$. Show that for any $f, g \in V$ that satisfy the boundary conditions
(a) $f(a)=f(b)=0$, and similarly for g (Dirichlet BC).
(b) $f^{\prime}(a)=f^{\prime}(b)=0$, and similarly for g (Neumann BC).
(c) $f(a)=f(b), f^{\prime}(a)=f^{\prime}(b)$, and similarly for g (periodic BC).
that, considering each case above separately,

$$
\left\langle\frac{d^{2}}{d x^{2}} f, g\right\rangle=\left\langle f, \frac{d^{2}}{d x^{2}} g\right\rangle
$$

This shows that the 1D Laplacian, considered as a linear operator on V along with each of the above boundary conditions, is a self-adjoint operator. (Hint: In each case, use integration by parts for definite integrals twice and apply the boundary conditions.)
ANS: Now, integrating by parts twice, and using the fact that the boundary terms that arise in each of the two steps is 0 for each of the BCs listed above, we have

$$
\begin{aligned}
\left\langle\frac{d^{2}}{d x^{2}} f, g\right\rangle & =\int_{a}^{b} f^{\prime \prime}(x) g(x) d x \text { and integrating by parts } \\
& =\left.g(x) f^{\prime}(x)\right|_{a} ^{b}-\int_{a}^{b} f^{\prime}(x) g^{\prime}(x) d x \\
& =-\int_{a}^{b} f^{\prime}(x) g^{\prime}(x) d x \text { and integrating by parts } \\
& =-\left[\left.g^{\prime}(x) f(x)\right|_{a} ^{b}-\int_{a}^{b} f(x) g^{\prime \prime}(x) d x\right] \\
& =\int_{a}^{b} f(x) g^{\prime \prime}(x) d x \\
& =\left\langle f, \frac{d^{2}}{d x^{2}} g\right\rangle
\end{aligned}
$$

