
MATH 552 Scientific Computing II Spring 2016

HW #1 Solutions

1. Fourier Series and Orthogonality of Sines and Cosines: The Fourier series for f ∈
L2[−π, π], given by

f(x) =
a0
2

+
∞∑
k=1

ak cos kx+ bk sin kx ,

is an expansion of the function f(x) in the basis of trigonometric functions

{φ0(x), φ1(x), φ2(x), φ3(x), φ4(x), . . .} = {1, cosx, sinx, cos 2x, sin 2x, . . .}

Recall the inner product

〈f, g〉 =

∫ π

−π
f(x)g(x) dx ,

find an expression for 〈φn(x), φm(x)〉 for m,n ≥ 0. In particular, show that the basis
functions are mutually orthogonal by showing that for n 6= m the inner product is
zero.

ANS:

Using the identity sin a sin b = 1
2
(cos (a− b)− cos (a+ b))

〈sinnx, sinmx〉 =

∫ π

−π
sinnx sinmx dx

=
1

2

∫ π

−π
cos (n−m)x− cos (n+m)x dx

=
1

2


∫ π
−π 1− 1 dx n = m = 0∫ π
−π 1− cos 2nx dx n = m 6= 0∫ π
−π cos (n−m)x− cos (n+m)x dx n 6= m

=
1

2


0 n = m = 0

2π−
[

1
2n

sin 2nx
]∣∣∣π
−π

n = m 6= 0[
1

(n−m)
sin (n−m)x− 1

(n+m)
sin (n+m)x

]∣∣∣π
−π

n 6= m

=
1

2


0 n = m = 0

2π − 0 n = m 6= 0

0− 0 n 6= m

=


0 n = m = 0

π n = m 6= 0
0 n 6= m



Using the identity cos a cos b = 1
2
(cos (a− b)+cos (a+ b)) and following steps similar

to those above:

〈cosnx, cosmx〉 =

∫ π

−π
cosnx cosmx dx

=
1

2

∫ π

−π
cos (n−m)x+ cos (n+m)x dx

=


2π n = m = 0

π n = m 6= 0
0 n 6= m

Using the identity sin a cos b = 1
2
(sin (a− b) + sin (a+ b)). Note below that if n =

m = 0 or m = 0 and n > 0 the inner product is easily seen to be 0. Thus, assuming
m,n > 0

〈sinnx, cosmx〉 =

∫ π

−π
sinnx cosmx dx

=
1

2

∫ π

−π
sin (n−m)x+ sin (n+m)x dx

=


∫ π
−π 0 + sin 2nx dx n = m

−
[

1
(n−m)

cos (n−m)x+ 1
(n+m)

cos (n+m)x
]∣∣∣π
−π

n 6= m

= 0.



2. Separation of Variables: Use separation of variables to find the solution, in the form
of an infinite series, of the homogeneous heat conduction problem with Neumann
no flux boundary conditions:

PDE:
∂u

∂t
= κ

∂2u

∂x2
, (0 < x < L, t > 0)

BCs:
∂u

∂x
(0, t) = 0,

∂u

∂x
(L, t) = 0, (t > 0)

IC: u(x, 0) = f(x) (t = 0)

Proceed as follows:

(a) Assume u(x, t) = G(t)φ(x) and derive the ODEs satisfied by φ(x) and G(t).

(b) Solve the ODEs for φ(x) and G(t), and determine the allowed values for the
separation constant λ.

(c) Show that the eigenfunctions of the spatial eigenvalue-eigenfunction problem
are mutually orthogonal.

(d) Write the solution in terms of an infinite series with coefficients an, and de-
rive a formula for the an in terms of an integral involving the intial condition
u(x, 0) = f(x).

ANS: To solve using separation of variables, we proceed as follows:

(a) Letting u(x, t) = G(t)φ(x) and substituting this expression into the PDE gives

G′(t)φ(x) = κG(t)φ′′(x) or
G′(t)

κG(t)
=
φ′′(x)

φ(x)
= −λ

where λ is the separation constant. Therefore G(t) satisfies the ODE

G′(t) = −λκG(t),

and φ(x) the ODE with BC{
φ′′(x) = −λφ(x)

φ′(0) = φ′(L) = 0.

(b) The ODE for G(t) has the general solution

G(t) = Ce−κλt,

while the solution φ(x) depends on λ:

λ < 0: General solution φ(x) = c1 cosh
√
−λx + c2 sinh

√
−λx, and applying

BC

0 = φ′(0) =
√
−λ (c1 sinh 0+c2 cosh 0) =

√
−λ (c1∗0+c2∗1) =

√
−λ c2 ⇒ c2 = 0,



and

0 = φ′(L) = c1
√
−λ sinh

√
−λL ⇒ c1 = 0 since sinh

√
−λL 6= 0.

Thus for λ < 0 we have only the trivial solution φ ≡ 0.

λ = 0: General solution φ(x) = c1 + c2x, and applying BC

0 = φ′(0) = φ′(L) = c2 ⇒ c2 = 0.

Thus for λ = 0 we have φ = c1 = A0 where A0 is an arbitrary nonzero number,
which we can set to 1.

λ > 0: General solution φ(x) = c1 cos
√
λx+ c2 sin

√
λx, and applying BC

0 = φ′(0) =
√
λ (−c1 sin 0+c2 cos 0) =

√
λ (−c1∗0+c2∗1) =

√
λ c2 ⇒ c2 = 0,

and

0 = φ′(L) = −
√
λ c1 sin

√
λL ⇒ c1 = 0 or

√
λL = nπ for n = 1, 2, 3, . . .

Since c1 = 0 gives the trivial solution, we take the latter, and have for λ > 0

λn =
nπ

L

2

, φn(x) = An cos
nπx

L
for each n = 1, 2, 3, . . .

(c) The eigenfunctions of the spatial eigenvalue-eigenfunction problem are given
by

{φ0, φ1, φ2, . . .} = {1, cos
πx

L
, cos

2πx

L
, . . .} = {φn(x)}∞n=0.

Using the results of problem 2, we have for n,m ≥ 0

〈φn(x), φm(x)〉 =

∫ L

0

cos
nπx

L
cos

mπx

L
dx

=
1

2

∫ L

0

cos
(n−m)πx

L
+ cos

(n+m)πx

L
dx

=


L n = m = 0

L/2 n = m 6= 0
0 n 6= m

showing that when n 6= m that 〈φn(x), φm(x)〉 = 0, i.e. the set of eigenfunctions
{φn(x)}∞n=0 is mutually orthogonal.

(d) Using the orthogonality of the φn, we have

u(x, t) = A0 +
∞∑
n=1

An e
−κ(nπ

L
)2t cos

nπx

L

where

A0 =
1

L

∫ L

0

f(x) dx and An =
2

L

∫ L

0

f(x) cos
nπx

L
dx.



3. Inhomogeneous Boundary Conditions: Consider the 1D heat conduction problem
for u(x, t) with fixed temperature boundary conditions:

PDE:
∂u

∂t
= κ

∂2u

∂x2
, (0 < x < L, t > 0)

BCs: u(0, t) = α, u(L, t) = β, (t > 0)

IC: u(x, 0) = f(x) (t = 0)

Let h(x) = α + (β − α)x/L and v(x, t) = u(x, t)− h(x). Determine the PDE, BCs
and IC that v(x, t) satisfies. Given the solution v(x, t) of the new system, explain
the steps that you would go about to solve the original inhomogeneous problem for
u(x, t).

ANS: Let v(x, t) = u(x, t)− h(x). Then

∂v

∂t
=
∂u

∂t
and

∂2v

∂x2
=
∂2u

∂x2
since

d

dt
h(x) =

d2

dx2
h(x) = 0,

and note that h(0) = α and h(L) = β giving v(0, t) = v(L, t) = 0. Then the system
for v(x, t) is given by

∂v

∂t
= κ

∂2v

∂x2
(0 < x < L, t > 0)

v(0, t) = v(L, t) = 0 (t > 0)

v(x, 0) = u(x, 0)− h(x) = f(x)− h(x) = g(x) (t = 0)

Thus to solve the original system for u(x, t), first solve the system for v(x, t) and
one has u(x, t) = v(x, t) + h(x).



4. Self-Adjointness of the Laplacian: Consider the vector space V = C2([a, b]), the
set of all real-valued functions f(x) defined on the interval [a, b] which are at least
two times continuously differentiable. Let the inner product on V be defined in the
usual manner, 〈f, g〉 =

∫ b
a
f(x)g(x) dx. Show that for any f, g ∈ V that satisfy the

boundary conditions

(a) f(a) = f(b) = 0, and similarly for g (Dirichlet BC).

(b) f ′(a) = f ′(b) = 0, and similarly for g (Neumann BC).

(c) f(a) = f(b), f ′(a) = f ′(b), and similarly for g (periodic BC).

that, considering each case above separately,

〈 d
2

dx2
f, g〉 = 〈f, d

2

dx2
g〉 ,

This shows that the 1D Laplacian, considered as a linear operator on V along with
each of the above boundary conditions, is a self-adjoint operator. (Hint: In each
case, use integration by parts for definite integrals twice and apply the boundary
conditions.)

ANS: Now, integrating by parts twice, and using the fact that the boundary terms
that arise in each of the two steps is 0 for each of the BCs listed above, we have

〈 d
2

dx2
f, g〉 =

∫ b

a

f ′′(x)g(x) dx and integrating by parts

= g(x)f ′(x)
∣∣∣b
a
−
∫ b

a

f ′(x)g′(x) dx

= −
∫ b

a

f ′(x)g′(x) dx and integrating by parts

= −
[
g′(x)f(x)

∣∣∣b
a
−
∫ b

a

f(x)g′′(x) dx
]

=

∫ b

a

f(x)g′′(x) dx

= 〈f, d
2

dx2
g〉


