Homework Set 1

Due Friday, 5 Febuary 2016

1. Fourier Series and Orthogonality of Sines and Cosines: The Fourier series for $f \in$ $L^{2}[-\pi, \pi]$, given by

$$
f(x)=\frac{a_{0}}{2}+\sum_{k=1}^{\infty} a_{k} \cos k x+b_{k} \sin k x
$$

is an expansion of the function $f(x)$ in the basis of trigonometric functions

$$
\left\{\phi_{0}(x), \phi_{1}(x), \phi_{2}(x), \phi_{3}(x), \phi_{4}(x), \ldots\right\}=\{1, \cos x, \sin x, \cos 2 x, \sin 2 x, \ldots\}
$$

Recall the inner product

$$
\langle f, g\rangle=\int_{-\pi}^{\pi} f(x) g(x) d x
$$

find an expression for $\left\langle\phi_{n}(x), \phi_{m}(x)\right\rangle$ for $m, n \geq 0$. In particular, show that the basis functions are mutually orthogonal by showing that for $n \neq m$ the inner product is zero. (Hint: It may be useful to express each trigonometric function in complex form.)
2. Separation of Variables: Use separation of variables to find the solution, in the form of an infinite series, of the homogeneous heat conduction problem with Neumann no flux boundary conditions:

$$
\begin{aligned}
\text { PDE: } & \frac{\partial u}{\partial t}=\kappa \frac{\partial^{2} u}{\partial x^{2}}, \quad(0<x<L, t>0) \\
\text { BCs: } & \frac{\partial u}{\partial x}(0, t)=0, \quad \frac{\partial u}{\partial x}(L, t)=0, \quad(t>0) \\
\mathrm{IC}: & u(x, 0)=f(x) \quad(t=0)
\end{aligned}
$$

Proceed as follows:
(a) Assume $u(x, t)=G(t) \phi(x)$ and derive the ODEs satisfied by $\phi(x)$ and $G(t)$.
(b) Solve the ODEs for $\phi(x)$ and $G(t)$, and determine the allowed values for the separation constant λ.
(c) Show that the eigenfunctions of the spatial eigenvalue-eigenfunction problem are mutually orthogonal.
(d) Write the solution in terms of an infinite series with coefficients a_{n}, and derive a formula for the a_{n} in terms of an integral involving the intial condition $u(x, 0)=f(x)$.
3. Inhomogeneous Boundary Conditions: Consider the 1D heat conduction problem for $u(x, t)$ with fixed temperature boundary conditions:

$$
\begin{aligned}
\text { PDE: } & \frac{\partial u}{\partial t}=\kappa \frac{\partial^{2} u}{\partial x^{2}}, \quad(0<x<L, t>0) \\
\text { BCs: } & u(0, t)=\alpha, \quad u(L, t)=\beta, \quad(t>0) \\
\text { IC: } & u(x, 0)=f(x) \quad(t=0)
\end{aligned}
$$

Let $h(x)=\alpha+(\beta-\alpha) x / L$ and $v(x, t)=u(x, t)-h(x)$. Determine the PDE, BCs and IC that $v(x, t)$ satisfies. Given the solution $v(x, t)$ of the new system, explain the steps that you would go about to solve the original inhomogeneous problem for $u(x, t)$.
4. Self-Adjointness of the Laplacian: Consider the vector space $V=C^{2}([a, b])$, the set of all real-valued functions $f(x)$ defined on the interval $[a, b]$ which are at least two times continuously differentiable. Let the inner product on V be defined in the usual manner, $\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x$. Show that for any $f, g \in V$ that satisfy the boundary conditions
(a) $f(a)=f(b)=0$, and similarly for g (Dirichlet BC).
(b) $f^{\prime}(a)=f^{\prime}(b)=0$, and similarly for g (Neumann BC).
(c) $f(a)=f(b), f^{\prime}(a)=f^{\prime}(b)$, and similarly for g (periodic BC).
that, considering each case above separately,

$$
\left\langle\frac{d^{2}}{d x^{2}} f, g\right\rangle=\left\langle f, \frac{d^{2}}{d x^{2}} g\right\rangle
$$

This shows that the 1D Laplacian, considered as a linear operator on V along with each of the above boundary conditions, is a self-adjoint operator. (Hint: In each case, use integration by parts for definite integrals twice and apply the boundary conditions.)

