1. Matrix norms
(a) Consider the matrix,

$$
A=\left[\begin{array}{ccc}
2 & -3 & 1 \\
-4 & 1 & 2 \\
5 & 0 & 1
\end{array}\right]
$$

Compute $\|A\|_{\infty}$ and find a vector x such that $\|A\|_{\infty}=\|A x\|_{\infty} /\|x\|_{\infty}$.
(b) Find an example of a 2×2 matrix A such that $\|A\|_{\infty}=1$ but $\rho(A)=0$. This shows that the spectral radius $\rho(A)$ does not define a matrix norm.
2. Consider the matrix, right side vector, and two approximate solutions,

$$
A=\left[\begin{array}{ll}
1.2969 & 0.8648 \\
0.2161 & 0.1441
\end{array}\right], b=\left[\begin{array}{l}
0.8642 \\
0.1440
\end{array}\right], x_{1}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], x_{2}=\left[\begin{array}{c}
0.9911 \\
-0.4870
\end{array}\right] .
$$

(a) Show that $x=[2,-2]^{T}$ is the exact solution of $A x=b$.
(b) Compute the error and residual vectors for x_{1} and x_{2}.
(c) Use MATLAB to find $\|A\|_{\infty},\left\|A^{-1}\right\|_{\infty}$, and $\kappa_{\infty}(A)$.
(d) In class we proved a theorem relating the condition number of A, the relative error, and the relative residual. Check this result for the two approximate solutions x_{1} and x_{2} (using the $\infty-$ norm).
3. The following data are taken from a polynomial $P(x)$ of degree ≤ 5. What is the degree of $P(x)$? Explain how you know.

x	-2	-1	0	1	2	3
$P(x)$	-5	1	1	1	7	25

4. This problem emphasizes the difficulty of computing interpolating polynomials in standard form. The matrices which arise are called Vandermonde matrices, and can be quite illconditioned. Consider the polynomial of degree n that interpolates a set of data $\left\{F_{i}\right\}$ at the points $\left\{x_{i}\right\}$ in the form

$$
P_{n}(x)=\sum_{i=0}^{n} a_{i} x^{i}
$$

and has the property that

$$
P_{n}\left(x_{i}\right)=F_{i} .
$$

(a) Write down the system (for a general n) that must be solved to compute the a_{i}.
(b) Compute the coefficients for the polynomial that interpolates the function

$$
F(x)=\sum_{i=0}^{n} x^{i}
$$

at the $n+1$ points $x_{i}=1+\frac{i}{n}$ for $i=0, \ldots, n$ (i.e. $\left.F_{i}=F\left(x_{i}\right)\right)$. Do this for $n=7,9,11,13$. The MATLAB code for $n=7$ is
>> format long e
>> $n=7$;
>> $\mathrm{x}=\left(1+(0: 1 / \mathrm{n}: 1)^{\prime}\right)$;
>> V=fliplr(vander(x));
>> $\mathrm{F}=\operatorname{sum}(\mathrm{V}, 2)$;
>> $\mathrm{a}=\mathrm{V} \backslash \mathrm{F}$;
You should use the help in MATLAB to make sure you understand what each of these commands. Note that fliplr is used so that V corresponds to the the matrix from part (a), as well as the definition of V given in class last term.
(c) Compute the ∞-norm condition number of each Vandermode matrix V in part (b). Use MATLAB's cond command for this.
(d) Compute the relative error in the ∞-norm of the computed coefficients a_{i}. The true answer is given by the $n^{t h}$ degree polynomial with $a_{i}=1$ for $i=0, \ldots, n$. Discuss the results in lieu of the condition numbers from (c).
5. Let $f(x)=1 / x$. Take $x_{0}=2, x_{1}=3, x_{2}=4$.
(a) Find the standard form of the interpolating polynomial $P_{2}(x)$ of $f(x)$ at the given interpolation points.
(b) Use the theorem proven in class to find an upper bound for the error

$$
\left\|f-P_{2}\right\|_{\infty}=\max _{2 \leq x \leq 4}\left|f(x)-P_{2}(x)\right| .
$$

(c) Find $\left\|f-P_{2}\right\|_{\infty}$ to at least 5 decimal places of accuracy.

