1. Using the m-file my_newton.m, estimate $\sqrt{8}$ by finding the positive root of $f(x)=x^{2}-8$. Try three different initial guesses: (i) $x_{0}=2$, (ii) $x_{0}=3$, and (iii) $x_{0}=50$. In all cases take $t o l=1 e-14$, and include the output from each. Discuss the results in light of Problem \#3 from HW \#3.
2. Consider the function $f(x)=\tan (x)-x$.
a) Use Newton's method to find the root near $x=101$. You will observe that this root is difficult to find. Starting with $x_{0}=101$ is not a good initial guess. Use a graphical method to determine roughly where α is, then choose an initial condition x_{0} sufficiently close to α in order to achieve convergence. To explain the difficulty compute the quantity $C \approx \frac{1}{2} \frac{\left|f^{\prime \prime}(\alpha)\right|}{\left|f^{\prime}(\alpha)\right|}$. Recall the discussion in class. Discuss your findings.
b) Reformulate the problem of finding a root of $f(x)$ by finding a function $h(x)$ whose roots are identical to those of $f(x)$ (hint: use the fact that $\tan x=\frac{\sin x}{\cos x}$). Apply Newton's method to the $h(x)$ that you found, with the initial guess $x_{0}=101$. Comment on the convergence in this case as compared to the findings in part a).
3. In HW \#1 we found the second order Taylor polynomial $P_{2}(x)=1+x$ for $f(x)=$ $e^{x} \cos x$ expanded about $x_{0}=0$. An upper bound on the error incurred when using P_{2} to approximate f on $[0,1]$ was given by

$$
\max _{x \in[0,1]} \frac{e^{x}(\sin x+\cos x)}{3}=\frac{e(\sin 1+\cos 1)}{3} \approx 1.2520
$$

derived using the remainder term. Find the true maximum error to at least 12 decimal digits of accuracy. How do the bound and this true error compare? Plot the absolute value of the error between P_{2} and f over $[0,1]$. Be sure to label the axes, and put a title on the plot. Include a copy of your graph.
4. (Order of Convergence of the Secant method) In class it was stated that the order of convergence for the Secant method is $(1+\sqrt{5}) / 2$. Confirm this by applying the Secant method to $f(x)=10-e^{x}, x_{0}=1.5, x_{1}=1.8$ and tol $=1 e-14$. To do so you'll need to write an M-file my_secant.m, whose first line should be

```
function [root,vals,iter,ierr] = my_secant(f,x0,x1,tol,itermax)
```

with the stopping criteria $\left|f\left(x_{n}\right)\right|<t o l$, the same that we used for Newton's method.
Use the iterates produced to estimate the order of convergence p. You will need a good approximation to the exact root, for which you should use 2.302585092994045 , the most accurate that MATLAB can produce. Include a copy of your m-file.
5. Let A be the 2×2 matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Use Gaussian elimination to obtain A^{-1} by solving the two systems $A x_{1}=e_{1}$ and $A x_{2}=e_{2}$, where e_{1} and e_{2} are the columns of the 2×2 identity matrix. Note that you can perform both at the same time by considering the augmented system $[A \mid I]$. Prove that A^{-1} exists if and only if $\operatorname{det}(A) \neq 0$.
6. Write a MATLAB m-file to find the $L U$ decomposition of a given $n \times n$ matrix A with partial pivoting. The routine should return the updated matrix A and the pivot vector p. Name the m-file function my_lu.m, the first few lines of which should be as follows:

```
function [a,p] = my_lu(a)
%
n = size(a,1);
p = (1:n)';
(your code here!)
```

The code above sets n equal to the dimension of the matrix and initializes the pivot vector p. As a test of your code, in MATLAB execute the statements exactly as they appear:

```
>>diary my_lu.txt
>>format short e
>>a = [2 2 -3;3 1 -2;6 8 1];
>>[a,p] = my_lu(a)
>>diary off
```

Submit your output and be sure to include a copy of your code.

