
Math 551 Introduction to Scientific Computing Spring 2019

Solutions: Homework Set 3

1. Given the function f(x) = cosh x+ cosx− γ, for each γ = 1, 2, 3 determine if there
are any roots (plotting may help here!) for which one can use the bisection method
to find. If so, find an interval that contains a root, and then compute it using the
bisection method with a tolerance of 1e−10.

ANS: Below is the plot of f(x) for each value of γ. It is clear the for γ = 1 there
are no real roots. For γ = 2, there is a root of multiplicity ≥ 2 at x = 0 since
f(0) = cosh 0 + cos 0− 2 = 1 + 1− 2 = 0, and f ′(0) = sinh 0− sin 0 = 0− 0 = 0, and
the function does not change sign near x = 0. Thus, there is no interval over which
f(x) changes sign. However, for γ = 3 we can see that there are two roots, of the
form x = ±α since f(x) is an even function.
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So for γ = 3 we use my bisect to estimate the positve root, taking [a, b] = [1.75, 2].

>> [root] = my_bisect(’cosh(x)+cos(x)-3’,1.75,2,1E-10,100)

x_n f(x_n)

------------------------------------------------

1.875000000000000e+00 3.755353739794653e-02

1.812500000000000e+00 -9.486303597334933e-02

1.843750000000000e+00 -3.036814157462109e-02

1.859375000000000e+00 3.156614216319742e-03

1.851562500000000e+00 -1.371381071232225e-02



1.855468750000000e+00 -5.305731306345596e-03

1.857421875000000e+00 -1.081357010183304e-03

1.858398437500000e+00 1.035927084317656e-03

1.857910156250000e+00 -2.314010470660932e-05

1.858154296875000e+00 5.062871746299713e-04

1.858032226562500e+00 2.415469598848752e-04

1.857971191406250e+00 1.091967842845598e-04

1.857940673828125e+00 4.302667902145174e-05

1.857925415039062e+00 9.942871972867806e-06

1.857917785644531e+00 -6.598720161843374e-06

1.857921600341797e+00 1.672049956269461e-06

1.857919692993164e+00 -2.463341590264179e-06

1.857920646667480e+00 -3.956474392552423e-07

1.857921123504639e+00 6.382008530536609e-07

1.857920885086060e+00 1.212766056468695e-07

1.857920765876770e+00 -1.371854416731821e-07

1.857920825481415e+00 -7.954424674494476e-09

1.857920855283737e+00 5.666108915391987e-08

1.857920840382576e+00 2.435333223971270e-08

1.857920832931995e+00 8.199453560564507e-09

1.857920829206705e+00 1.225148871242254e-10

1.857920827344060e+00 -3.915955115729730e-09

1.857920828275383e+00 -1.896720114302752e-09

1.857920828741044e+00 -8.871028356338684e-10

1.857920828973874e+00 -3.822937522102166e-10

1.857920829090290e+00 -1.298894325429956e-10

1.857920829148497e+00 -3.687716798594920e-12

root =

1.857920829148497e+00

Notice that values in the f(xn) column do not go to 0 monotonically, indicating that
for the bisection method the estimates xn may get close to α and then move away
slightly before continuing towards α.



2. Which of the following iterations xn+1 = g(xn), provided x0 is sufficiently close to
α, converge to the indicated fixed point α? Explain.

(a) xn+1 = g(xn) = −16 + 6xn +
12

xn
, α = 2

(b) xn+1 = g(xn) =
2

3
xn +

1

x2n
, α = 31/3

(c) xn+1 = g(xn) =
12

1 + xn
, α = 3

ANS: For each we check to make sure α is a fixed point, then examine the derivatives
of g(x) at α to determine the order of convergence. We want to find the order p, and
in addition C in the case of linear convergence (p = 1), such that for n sufficiently
large we have

|xn+1 − α| ≤ C|xn − α|p.

(a) g(x) = −16+6x+12x−1, and g(2) = −16+6∗2+12∗(2)−1 = −16+12+6 = 2,
so α = 2 is a fixed point. g′(x) = 6 − 12x−2, and g′(2) = 6 − 3 = 3. Since
|g′(2)| = |g′(α)| = 3 ≥ 1, in general, given x0 sufficiently close to α the iteration
is not guaranteed converge.

(b) g(x) = 2x/3 + x−2, and g(31/3) = 2 ∗ 3−2/3 + 3−2/3 = 3 ∗ 3−2/3 = 31/3, so
α = 31/3 is a fixed point. g′(x) = 2/3 − 2x−3, and g′(31/3) = 2/3 − 2/3 = 0,
indicating that the convergence is at least quadratic. Now, g′′(x) = 6x−4, and
g′′(31/3) = 6 ∗ 3−4/3 6= 0. So indeed, if x0 is chosen sufficeintly close to α, the
order of convergence is quadratic, i.e. p = 2.

(c) g(x) = 12/(1 + x), and g(3) = 12/(1 + 3) = 3, so α = 3 is a fixed point.
g′(x) = −12/(1 + x)2, and g′(3) = −12/(1 + 3)2 = −3/4. Since g′(α) 6= 0 but
|g′(α)| < 1, if x0 is chosen sufficiently close to α the iteration will converge with
p = 1, or linearly, with rate C ≈ 3/4.



3. Consider Newton’s method for finding the
√
a by finding the positive root of f(x) =

x2 − a = 0. Assuming x0 > 0 and x0 6=
√
a, show the following:

(a) xn+1 =
1

2

(
xn +

a

xn

)
(b) x2n+1 − a =

(
x2n − a

2xn

)2

for n ≥ 0, and thus xn >
√
a for all n ≥ 1.

(c) The iterates {xn}∞n=0 are a strictly decreasing sequence for n ≥ 1. Hint: Con-
sider the sign of xn+1 − xn.

(d) A fundamental result concerning the convergence of sequences of real numbers
is that if the sequence {xn}∞n=0 is bounded and monotonic, then it converges to
a finite limit. In light of (a)-(c), discuss the convergence of Newton’s method
for finding

√
a.

ANS: To find
√
a we use Newton’s method to find the positive root of f(x) =

x2 − a = 0.

(a) Applying Newton’s method to f(x),

xn+1 = xn −
f(xn)

f ′(xn)
= xn −

x2n − a
2xn

=
2x2n + a

2xn
=

1

2

(
xn +

a

xn

)
(b) Using the result from (a)

x2n+1−a =
1

4

(
xn +

a

xn

)2

−a =
1

4

(
x2n + 2a+

a2

x2n

)
−a =

1

4

(
x2n − 2a+

a2

x2n

)
=

(
x2n − a

2xn

)2

.

Thus, if x2n 6= a then
(

x2
n−a
2xn

)2

> 0, or x2n+1 > a, or xn+1 >
√
a for n ≥ 0. It

then follows that xn >
√
a for n ≥ 1.

(c) Note using (a)

xn+1 − xn =
1

2

(
xn +

a

xn

)
− xn =

1

2

(
a

xn
− xn

)
=

1

2

(
a− x2n
x2n

)
.

From (b) we have xn >
√
a for n ≥ 1, or a − x2n < 0. Thus the term

(
a−x2

n

x2
n

)
is strictly negative for n ≥ 1. Hence, xn+1 − xn < 0 for n ≥ 1, showing the
sequence {xn}∞n=0 is strictly decreasing for n ≥ 1.

(d) From x1 on we have a monotonic and bounded sequence of real numbers,
which converges by the Monotonic Sequence Theorem.



4. (Ill-behaved Root Finding) In our analysis of Newton’s method we showed that if
f ′(α) 6= 0 (α is a simple, multiplicity 1 root), then second order convergence results
provided x0 is chosen sufficiently close to α. However, if α is a root of multiplicity
p ≥ 2 of f(x), then it follows that

f(α) = f ′(α) = f ′′(α) = ... = f (p−1)(α) = 0 .

Then there exists a function h(x) such that

f(x) = (x− α)ph(x)

and h(α) 6= 0.

a) Write out the iteration function g(x) for Newton’s method in this case (note: it
will involve h(x) and h′(x)).

b) Show that g′(α) = 1 − 1/p 6= 0, and explain why this implies only linear
convergence of Newton’s method for a root whose multiplicity is two or greater.

ANS: Given f(x) the associated Newton iteration function is given by

g(x) = x− f(x)

f ′(x)
.

(a) First note that f ′(x) = (x− α)ph′(x) + p(x− α)p−1h(x). Then

g(x) = x− f(x)

f ′(x)

= x− (x− α)ph(x)

(x− α)ph′(x) + p(x− α)p−1h(x)

= x− (x− α)h(x)

(x− α)h′(x) + ph(x)

(b) Taking the derivative of g(x) gives

g′(x) = 1− [f ′(x)]2 − f(x)f ′′(x)

[f ′′(x)]2

= 1− (x− α)2[h′(x)]2 + ph2(x)− (x− α)2h(x)h′′(x)

[(x− α)h′(x) + ph(x)]2

Evaluating g′(x) at x = α, we have

g′(α) = 1− (0)2[h′(α)]2 + ph2(α)− (0)2h(α)h′′(α)

[(0)h′(α) + ph(α)]2

= 1− ph2(α)

p2h2(α)
= 1− 1

p
6= 0 since p 6= 1 .

Thus, if the root α is not a simple root, then g′(α) 6= 0, which is required for
convergence that is at least quadratic (recall the proof of the convergence of
Newton’s method for simple roots!).



5. (Aitken’s Extrapolation) Consider the fixed point iteration xn+1 = g(xn). Once the

iterates are “close” to the root α then α− xn+1

α− xn
≈ g′(α) is nearly a constant (using the

MVT, and assuming g(x) is smooth enough), which is independent of n. In this case
we can write

α− xn+1

α− xn
≈ α− xn
α− xn−1

,

or equivalently (α−xn+1)(α−xn−1) ≈ (α−xn)2. One can then solve this expression
for α to get an improved approximation for the fixed point. If the assumption
g′(xn) ≈ constant is true, the approximation for α that is obtained in this way is
usually a big improvement over the last xn in the generated sequence.

This procedure is called Aitken’s extrapolation. Given below is a table of iterates
from a linearly convergent sequence xn+1 = g(xn) = xn− (x2n−3)/2 used to find

√
3.

Use Aitken’s extrapolation, and the last three iterates below, to obtain an improved
estimate for the fixed point α.

n xn
0 1.8000000000
1 1.6800000000
2 1.7688000000
3 1.7044732800
4 1.7518586988
5 1.7173542484
6 1.7427014411
7 1.7241972846
8 1.7377691464
9 1.7278483432

Compare the absolute error in x9 to that of the new approximate root found using
the Aitken’s extrapolation procedure above. Make sure to use format long e in
MATLAB is order to observe the increased accuracy.

ANS: Starting from (α− xn+1)(α− xn−1) ≈ (α− xn)2, we have the expression

α2 − (xn+1 + xn−1)α + xn+1xn−1 ≈ α2 − 2xnα + x2n .

Canceling the α2 term and solving for α (a linear expression!), gives

α ≈ x2n − xn+1xn−1
2xn − (xn+1 + xn−1)

.

With xn+1 = x9, xn = x8 and xn−1 = x7, from above we have the approximation

α = 1.73203783537268 .

Then |α −
√

3| = 1.2972e−05, while |x9 −
√

3| = 4.2025e−03. The approximation
produced using Aitken extrapolation is appreciably more accurate.

The original iteration xn+1 = g(xn) = xn −
(x2n − 3)

2
with x0 = 1.8 would require a

minimum of 29 iterations to achieve comparble accuracy, i.e., you would have to
compute up to the iterate x29.


