Solutions: Homework Set 3

1. Given the function $f(x)=\cosh x+\cos x-\gamma$, for each $\gamma=1,2,3$ determine if there are any roots (plotting may help here!) for which one can use the bisection method to find. If so, find an interval that contains a root, and then compute it using the bisection method with a tolerance of $1 e-10$.
ANS: Below is the plot of $f(x)$ for each value of γ. It is clear the for $\gamma=1$ there are no real roots. For $\gamma=2$, there is a root of multiplicity ≥ 2 at $x=0$ since $f(0)=\cosh 0+\cos 0-2=1+1-2=0$, and $f^{\prime}(0)=\sinh 0-\sin 0=0-0=0$, and the function does not change sign near $x=0$. Thus, there is no interval over which $f(x)$ changes sign. However, for $\gamma=3$ we can see that there are two roots, of the form $x= \pm \alpha$ since $f(x)$ is an even function.

So for $\gamma=3$ we use my_bisect to estimate the positve root, taking $[a, b]=[1.75,2]$.
>> [root] $=$ my_bisect (' $\left.\cosh (x)+\cos (x)-3^{\prime}, 1.75,2,1 \mathrm{E}-10,100\right)$

x_n	$\mathrm{f}\left(\mathrm{x} _\mathrm{n}\right)$
$1.875000000000000 \mathrm{e}+00$	$3.755353739794653 \mathrm{e}-02$
$1.812500000000000 \mathrm{e}+00$	-9.486303597334933e-02
$1.843750000000000 \mathrm{e}+00$	-3.036814157462109e-02
$1.859375000000000 \mathrm{e}+00$	$3.156614216319742 \mathrm{e}-03$
$1.851562500000000 \mathrm{e}+00$	-1.371381071232225e-02

$1.855468750000000 \mathrm{e}+00$	$-5.305731306345596 \mathrm{e}-03$
$1.857421875000000 \mathrm{e}+00$	$-1.081357010183304 \mathrm{e}-03$
$1.858398437500000 \mathrm{e}+00$	$1.035927084317656 \mathrm{e}-03$
$1.857910156250000 \mathrm{e}+00$	$-2.314010470660932 \mathrm{e}-05$
$1.858154296875000 \mathrm{e}+00$	$5.062871746299713 \mathrm{e}-04$
$1.858032226562500 \mathrm{e}+00$	$2.415469598848752 \mathrm{e}-04$
$1.857971191406250 \mathrm{e}+00$	$1.091967842845598 \mathrm{e}-04$
$1.857940673828125 \mathrm{e}+00$	$4.302667902145174 \mathrm{e}-05$
$1.857925415039062 \mathrm{e}+00$	$9.942871972867806 \mathrm{e}-06$
$1.857917785644531 \mathrm{e}+00$	$-6.598720161843374 \mathrm{e}-06$
$1.857921600341797 \mathrm{e}+00$	$1.672049956269461 \mathrm{e}-06$
$1.857919692993164 \mathrm{e}+00$	$-2.463341590264179 \mathrm{e}-06$
$1.857920646667480 \mathrm{e}+00$	$-3.956474392552423 \mathrm{e}-07$
$1.857921123504639 \mathrm{e}+00$	$6.382008530536609 \mathrm{e}-07$
$1.857920885086060 \mathrm{e}+00$	$1.212766056468695 \mathrm{e}-07$
$1.857920765876770 \mathrm{e}+00$	$-1.371854416731821 \mathrm{e}-07$
$1.857920825481415 \mathrm{e}+00$	$-7.954424674494476 \mathrm{e}-09$
$1.857920855283737 \mathrm{e}+00$	$5.666108915391987 \mathrm{e}-08$
$1.857920840382576 \mathrm{e}+00$	$2.435333223971270 \mathrm{e}-08$
$1.857920832931995 \mathrm{e}+00$	$8.199453560564507 \mathrm{e}-09$
$1.857920829206705 \mathrm{e}+00$	$1.225148871242254 \mathrm{e}-10$
$1.857920827344060 \mathrm{e}+00$	$-3.915955115729730 \mathrm{e}-09$
$1.857920828275383 \mathrm{e}+00$	$-1.896720114302752 \mathrm{e}-09$
$1.857920828741044 \mathrm{e}+00$	$-8.87102835338684 \mathrm{e}-10$
$1.857920828973874 \mathrm{e}+00$	$-3.822937522102166 \mathrm{e}-10$
$1.857920829090290 \mathrm{e}+00$	$-1.298894325429956 \mathrm{e}-10$
$1.857920829148497 \mathrm{e}+00$	$-3.687716798594920 \mathrm{e}-12$
$=$	
$1.857920829148497 \mathrm{e}+00$	
1	

Notice that values in the $f\left(x_{n}\right)$ column do not go to 0 monotonically, indicating that for the bisection method the estimates x_{n} may get close to α and then move away slightly before continuing towards α.
2. Which of the following iterations $x_{n+1}=g\left(x_{n}\right)$, provided x_{0} is sufficiently close to α, converge to the indicated fixed point α ? Explain.
(a) $x_{n+1}=g\left(x_{n}\right)=-16+6 x_{n}+\frac{12}{x_{n}}, \quad \alpha=2$
(b) $x_{n+1}=g\left(x_{n}\right)=\frac{2}{3} x_{n}+\frac{1}{x_{n}^{2}}, \quad \alpha=3^{1 / 3}$
(c) $x_{n+1}=g\left(x_{n}\right)=\frac{12}{1+x_{n}}, \quad \alpha=3$

ANS: For each we check to make sure α is a fixed point, then examine the derivatives of $g(x)$ at α to determine the order of convergence. We want to find the order p, and in addition C in the case of linear convergence ($p=1$), such that for n sufficiently large we have

$$
\left|x_{n+1}-\alpha\right| \leq C\left|x_{n}-\alpha\right|^{p} .
$$

(a) $g(x)=-16+6 x+12 x^{-1}$, and $g(2)=-16+6 * 2+12 *(2)^{-1}=-16+12+6=2$, so $\alpha=2$ is a fixed point. $g^{\prime}(x)=6-12 x^{-2}$, and $g^{\prime}(2)=6-3=3$. Since $\left|g^{\prime}(2)\right|=\left|g^{\prime}(\alpha)\right|=3 \geq 1$, in general, given x_{0} sufficiently close to α the iteration is not guaranteed converge.
(b) $g(x)=2 x / 3+x^{-2}$, and $g\left(3^{1 / 3}\right)=2 * 3^{-2 / 3}+3^{-2 / 3}=3 * 3^{-2 / 3}=3^{1 / 3}$, so $\alpha=3^{1 / 3}$ is a fixed point. $g^{\prime}(x)=2 / 3-2 x^{-3}$, and $g^{\prime}\left(3^{1 / 3}\right)=2 / 3-2 / 3=0$, indicating that the convergence is at least quadratic. Now, $g^{\prime \prime}(x)=6 x^{-4}$, and $g^{\prime \prime}\left(3^{1 / 3}\right)=6 * 3^{-4 / 3} \neq 0$. So indeed, if x_{0} is chosen sufficeintly close to α, the order of convergence is quadratic, i.e. $p=2$.
(c) $g(x)=12 /(1+x)$, and $g(3)=12 /(1+3)=3$, so $\alpha=3$ is a fixed point. $g^{\prime}(x)=-12 /(1+x)^{2}$, and $g^{\prime}(3)=-12 /(1+3)^{2}=-3 / 4$. Since $g^{\prime}(\alpha) \neq 0$ but $\left|g^{\prime}(\alpha)\right|<1$, if x_{0} is chosen sufficiently close to α the iteration will converge with $p=1$, or linearly, with rate $C \approx 3 / 4$.
3. Consider Newton's method for finding the \sqrt{a} by finding the positive root of $f(x)=$ $x^{2}-a=0$. Assuming $x_{0}>0$ and $x_{0} \neq \sqrt{a}$, show the following:
(a) $x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right)$
(b) $x_{n+1}^{2}-a=\left(\frac{x_{n}^{2}-a}{2 x_{n}}\right)^{2}$ for $n \geq 0$, and thus $x_{n}>\sqrt{a}$ for all $n \geq 1$.
(c) The iterates $\left\{x_{n}\right\}_{n=0}^{\infty}$ are a strictly decreasing sequence for $n \geq 1$. Hint: Consider the sign of $x_{n+1}-x_{n}$.
(d) A fundamental result concerning the convergence of sequences of real numbers is that if the sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ is bounded and monotonic, then it converges to a finite limit. In light of (a)-(c), discuss the convergence of Newton's method for finding \sqrt{a}.

ANS: To find \sqrt{a} we use Newton's method to find the positive root of $f(x)=$ $x^{2}-a=0$.
(a) Applying Newton's method to $f(x)$,

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{x_{n}^{2}-a}{2 x_{n}}=\frac{2 x_{n}^{2}+a}{2 x_{n}}=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right)
$$

(b) Using the result from (a)
$x_{n+1}^{2}-a=\frac{1}{4}\left(x_{n}+\frac{a}{x_{n}}\right)^{2}-a=\frac{1}{4}\left(x_{n}^{2}+2 a+\frac{a^{2}}{x_{n}^{2}}\right)-a=\frac{1}{4}\left(x_{n}^{2}-2 a+\frac{a^{2}}{x_{n}^{2}}\right)=\left(\frac{x_{n}^{2}-a}{2 x_{n}}\right)^{2}$.
Thus, if $x_{n}^{2} \neq a$ then $\left(\frac{x_{n}^{2}-a}{2 x_{n}}\right)^{2}>0$, or $x_{n+1}^{2}>a$, or $x_{n+1}>\sqrt{a}$ for $n \geq 0$. It then follows that $x_{n}>\sqrt{a}$ for $n \geq 1$.
(c) Note using (a)

$$
x_{n+1}-x_{n}=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right)-x_{n}=\frac{1}{2}\left(\frac{a}{x_{n}}-x_{n}\right)=\frac{1}{2}\left(\frac{a-x_{n}^{2}}{x_{n}^{2}}\right) .
$$

From (b) we have $x_{n}>\sqrt{a}$ for $n \geq 1$, or $a-x_{n}^{2}<0$. Thus the term $\left(\frac{a-x_{n}^{2}}{x_{n}^{2}}\right)$ is strictly negative for $n \geq 1$. Hence, $x_{n+1}-x_{n}<0$ for $n \geq 1$, showing the sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ is strictly decreasing for $n \geq 1$.
(d) From x_{1} on we have a monotonic and bounded sequence of real numbers, which converges by the Monotonic Sequence Theorem.
4. (Ill-behaved Root Finding) In our analysis of Newton's method we showed that if $f^{\prime}(\alpha) \neq 0$ (α is a simple, multiplicity 1 root), then second order convergence results provided x_{0} is chosen sufficiently close to α. However, if $\boldsymbol{\alpha}$ is a root of multiplicity $\boldsymbol{p} \geq \mathbf{2}$ of $f(x)$, then it follows that

$$
f(\alpha)=f^{\prime}(\alpha)=f^{\prime \prime}(\alpha)=\ldots=f^{(p-1)}(\alpha)=0
$$

Then there exists a function $h(x)$ such that

$$
f(x)=(x-\alpha)^{p} h(x)
$$

and $h(\alpha) \neq 0$.
a) Write out the iteration function $g(x)$ for Newton's method in this case (note: it will involve $h(x)$ and $\left.h^{\prime}(x)\right)$.
b) Show that $g^{\prime}(\alpha)=1-1 / p \neq 0$, and explain why this implies only linear convergence of Newton's method for a root whose multiplicity is two or greater.
ANS: Given $f(x)$ the associated Newton iteration function is given by

$$
g(x)=x-\frac{f(x)}{f^{\prime}(x)}
$$

(a) First note that $f^{\prime}(x)=(x-\alpha)^{p} h^{\prime}(x)+p(x-\alpha)^{p-1} h(x)$. Then

$$
\begin{aligned}
g(x) & =x-\frac{f(x)}{f^{\prime}(x)} \\
& =x-\frac{(x-\alpha)^{p} h(x)}{(x-\alpha)^{p} h^{\prime}(x)+p(x-\alpha)^{p-1} h(x)} \\
& =x-\frac{(x-\alpha) h(x)}{(x-\alpha) h^{\prime}(x)+p h(x)}
\end{aligned}
$$

(b) Taking the derivative of $g(x)$ gives

$$
\begin{aligned}
g^{\prime}(x) & =1-\frac{\left[f^{\prime}(x)\right]^{2}-f(x) f^{\prime \prime}(x)}{\left[f^{\prime \prime}(x)\right]^{2}} \\
& =1-\frac{(x-\alpha)^{2}\left[h^{\prime}(x)\right]^{2}+p h^{2}(x)-(x-\alpha)^{2} h(x) h^{\prime \prime}(x)}{\left[(x-\alpha) h^{\prime}(x)+p h(x)\right]^{2}}
\end{aligned}
$$

Evaluating $g^{\prime}(x)$ at $x=\alpha$, we have

$$
\begin{aligned}
g^{\prime}(\alpha) & =1-\frac{(0)^{2}\left[h^{\prime}(\alpha)\right]^{2}+p h^{2}(\alpha)-(0)^{2} h(\alpha) h^{\prime \prime}(\alpha)}{\left[(0) h^{\prime}(\alpha)+p h(\alpha)\right]^{2}} \\
& =1-\frac{p h^{2}(\alpha)}{p^{2} h^{2}(\alpha)}=1-\frac{1}{p} \neq 0 \quad \text { since } p \neq 1
\end{aligned}
$$

Thus, if the root α is not a simple root, then $g^{\prime}(\alpha) \neq 0$, which is required for convergence that is at least quadratic (recall the proof of the convergence of Newton's method for simple roots!).
5. (Aitken's Extrapolation) Consider the fixed point iteration $x_{n+1}=g\left(x_{n}\right)$. Once the iterates are "close" to the root α then $\frac{\alpha-x_{n+1}}{\alpha-x_{n}} \approx g^{\prime}(\alpha)$ is nearly a constant (using the MVT, and assuming $g(x)$ is smooth enough), which is independent of n. In this case we can write

$$
\frac{\alpha-x_{n+1}}{\alpha-x_{n}} \approx \frac{\alpha-x_{n}}{\alpha-x_{n-1}}
$$

or equivalently $\left(\alpha-x_{n+1}\right)\left(\alpha-x_{n-1}\right) \approx\left(\alpha-x_{n}\right)^{2}$. One can then solve this expression for α to get an improved approximation for the fixed point. If the assumption $g^{\prime}\left(x_{n}\right) \approx$ constant is true, the approximation for α that is obtained in this way is usually a big improvement over the last x_{n} in the generated sequence.
This procedure is called Aitken's extrapolation. Given below is a table of iterates from a linearly convergent sequence $x_{n+1}=g\left(x_{n}\right)=x_{n}-\left(x_{n}^{2}-3\right) / 2$ used to find $\sqrt{3}$. Use Aitken's extrapolation, and the last three iterates below, to obtain an improved estimate for the fixed point α.

n	x_{n}
0	1.8000000000
1	1.6800000000
2	1.7688000000
3	1.7044732800
4	1.7518586988
5	1.7173542484
6	1.7427014411
7	1.7241972846
8	1.7377691464
9	1.7278483432

Compare the absolute error in x_{9} to that of the new approximate root found using the Aitken's extrapolation procedure above. Make sure to use format long e in MATLAB is order to observe the increased accuracy.
ANS: Starting from $\left(\alpha-x_{n+1}\right)\left(\alpha-x_{n-1}\right) \approx\left(\alpha-x_{n}\right)^{2}$, we have the expression

$$
\alpha^{2}-\left(x_{n+1}+x_{n-1}\right) \alpha+x_{n+1} x_{n-1} \approx \alpha^{2}-2 x_{n} \alpha+x_{n}^{2}
$$

Canceling the α^{2} term and solving for α (a linear expression!), gives

$$
\alpha \approx \frac{x_{n}^{2}-x_{n+1} x_{n-1}}{2 x_{n}-\left(x_{n+1}+x_{n-1}\right)} .
$$

With $x_{n+1}=x_{9}, x_{n}=x_{8}$ and $x_{n-1}=x_{7}$, from above we have the approximation

$$
\alpha=1.73203783537268
$$

Then $|\alpha-\sqrt{3}|=1.2972 e-05$, while $\left|x_{9}-\sqrt{3}\right|=4.2025 e-03$. The approximation produced using Aitken extrapolation is appreciably more accurate.
The original iteration $x_{n+1}=g\left(x_{n}\right)=x_{n}-\frac{\left(x_{n}^{2}-3\right)}{2}$ with $x_{0}=1.8$ would require a minimum of 29 iterations to achieve comparble accuracy, i.e., you would have to compute up to the iterate x_{29}.

