1. Given the function $f(x)=\cosh x+\cos x-\gamma$, for each $\gamma=1,2,3$ determine if there are any roots (plotting may help here!) for which one can use the bisection method to find. If so, find an interval that contains a root, and then compute it using the bisection method with a tolerance of $1 e-10$.
2. Which of the following iterations $x_{n+1}=g\left(x_{n}\right)$, provided x_{0} is sufficiently close to α, converge to the indicated fixed point α ? Explain.
(a) $x_{n+1}=g\left(x_{n}\right)=-16+6 x_{n}+\frac{12}{x_{n}}, \quad \alpha=2$
(b) $x_{n+1}=g\left(x_{n}\right)=\frac{2}{3} x_{n}+\frac{1}{x_{n}^{2}}, \quad \alpha=3^{1 / 3}$
(c) $x_{n+1}=g\left(x_{n}\right)=\frac{12}{1+x_{n}}, \quad \alpha=3$
3. Consider Newton's method for finding the \sqrt{a} by finding the positive root of $f(x)=$ $x^{2}-a=0$. Assuming $x_{0}>0$ and $x_{0} \neq \sqrt{a}$, show the following:
(a) $x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right)$
(b) $x_{n+1}^{2}-a=\left(\frac{x_{n}^{2}-a}{2 x_{n}}\right)^{2}$ for $n \geq 0$, and thus $x_{n}>\sqrt{a}$ for all $n \geq 1$.
(c) The iterates $\left\{x_{n}\right\}_{n=0}^{\infty}$ are a strictly decreasing sequence for $n \geq 1$. Hint: Consider the sign of $x_{n+1}-x_{n}$.
(d) A fundamental result concerning the convergence of sequences of real numbers is that if the sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ is bounded and monotonic, then it converges to a finite limit. In light of (a)-(c), discuss the convergence of Newton's method for finding \sqrt{a}.
4. (Ill-behaved Root Finding) In our analysis of Newton's method we showed that if $f^{\prime}(\alpha) \neq 0$ (α is a simple, multiplicity 1 root), then second order convergence results provided x_{0} is chosen sufficiently close to α. However, if $\boldsymbol{\alpha}$ is a root of multiplicity $\boldsymbol{p} \geq \mathbf{2}$ of $f(x)$, then it follows that

$$
f(\alpha)=f^{\prime}(\alpha)=f^{\prime \prime}(\alpha)=\ldots=f^{(p-1)}(\alpha)=0
$$

Then there exists a function $h(x)$ such that

$$
f(x)=(x-\alpha)^{p} h(x)
$$

and $h(\alpha) \neq 0$.
a) Write out the iteration function $g(x)$ for Newton's method in this case (note: it will involve $h(x)$ and $\left.h^{\prime}(x)\right)$.
b) Show that $g^{\prime}(\alpha)=1-1 / p \neq 0$, and explain why this implies only linear convergence of Newton's method for a root whose multiplicity is two or greater.
5. (Aitken's Extrapolation) Consider the fixed point iteration $x_{n+1}=g\left(x_{n}\right)$. Once the iterates are "close" to the root α then $\frac{\alpha-x_{n+1}}{\alpha-x_{n}} \approx g^{\prime}(\alpha)$ is nearly a constant (using the MVT, and assuming $g(x)$ is smooth enough), which is independent of n. In this case we can write

$$
\frac{\alpha-x_{n+1}}{\alpha-x_{n}} \approx \frac{\alpha-x_{n}}{\alpha-x_{n-1}},
$$

or equivalently $\left(\alpha-x_{n+1}\right)\left(\alpha-x_{n-1}\right) \approx\left(\alpha-x_{n}\right)^{2}$. One can then solve this expression for α to get an improved approximation for the fixed point. If the assumption $g^{\prime}\left(x_{n}\right) \approx$ constant is true, the approximation for α that is obtained in this way is usually a big improvement over the last x_{n} in the generated sequence.
This procedure is called Aitken's extrapolation. Given below is a table of iterates from a linearly convergent sequence $x_{n+1}=g\left(x_{n}\right)=x_{n}-\left(x_{n}^{2}-3\right) / 2$ used to find $\sqrt{3}$. Use Aitken's extrapolation, and the last three iterates below, to obtain an improved estimate for the fixed point α.

n	x_{n}
0	1.8000000000
1	1.6800000000
2	1.7688000000
3	1.7044732800
4	1.7518586988
5	1.7173542484
6	1.7427014411
7	1.7241972846
8	1.7377691464
9	1.7278483432

Compare the absolute error in x_{9} to that of the new approximate root found using the Aitken's extrapolation procedure above. Make sure to use format long e in MATLAB is order to observe the increased accuracy.

