
Math 551 Introduction to Scientific Computing Summer I 2019

Solutions Homework Set 2

1. Find P2(x) for f(x) = ex cosx expanded about x0 = 0. Then find a bound on the error
|f(x)− P2(x)| in using P2 to approximate f on [0, 1].

ANS: First note that f ′(x) = ex(cosx − sinx), f ′′(x) = −2ex sinx, and f ′′′(x) =
−2ex(cosx+ sinx).

We have for x0 = 0:

P2(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)2

= 1 + 1(x− 0) +
0

2
(x− 0)2

= 1 + x

To bound the error in using P2(x) to approximate f(x) over the interval [0, 1], from Taylor’s
theorem we have

|f(x)− P2(x)| =

∣∣∣∣∣f (3)(ξx)

3!
(x− 0)3

∣∣∣∣∣ for ξx ∈ (0, 1)

=

∣∣∣∣−2eξx(cos (ξx) + sin (ξx))

3!
(x− 0)3

∣∣∣∣ for ξx ∈ (0, 1)

≤
∣∣2eξx(cos (ξx) + sin (ξx))

∣∣
3!

for ξx ∈ (0, 1)

since x3 is maximized at x = 1. We are left to find an upper bound for the expression in the
numerator, i.e., we have to find the maximum absolute value of g(x) = 2ex(cosx + sinx)
over the interval [0, 1]. From Calculus we know this can only occur at the endpoints of
the interval, x = 0, 1, or in (0, 1) where g′(x) = 4ex cosx = 0. But 4ex > 0 and there is no
point in [0, 1] where cosx = 0 (check this, if need be, by drawing a picture!).

So checking x = 0, 1 (the endpoints of the interval) we have

|g(0)| = |2e0(cos (0) + sin (0)| = 2,

and
|g(1)| = |2e1(cos (1) + sin (1)| ≈ 7.512098454189456.

Using the larger of these one can conclude that

max
x∈[0,1]

|f(x)− P2(x)| ≤ 7.512098454189456

6
≈ 1.252016409031576.



2. The floating point representation of a number is x = ±(0.a1a2 . . . an)β ×βe, where a1 6= 0,
−M ≤ e ≤M . Suppose β = 2, n = 8, and M = 4.

(a) Find the smallest positive (xmin) and largest positive (xmax) floating point numbers
that can be represented. Give the answers in decimal form (base 10).

(b) Find the floating point number in this system that is closest to π.

ANS: For (a) we have

xmin = +(0.10000000)2 × 2−4 = (2−1 × 2−4)10 = (2−5)10 =
1

32
= 0.03125 ,

and

xmax = +(0.11111111)2 × 24 = (
1

2
+

1

4
+ · · ·+ 1

256
)
10
× 24 =

255

256
× 24 =

255

16
= 15.9375 .

For (b), the closest number to π in this system, xπ is

xπ = +(0.11001001)2 × 22 = (
1

2
+

1

4
+

1

32
+

1

256
)
10
× 22 = 3.140625 .



3. Find the two roots of x2 − 50x + 1 = 0, performing all calculations in 5 decimal digit
arithmetic (i.e. β = 10, t = 5). Thus, round the answer of each arithmetic operation to 5
significant digits.

noindentANS: First apply the quadratic formula, rounding all computations to 5 signifi-
cant digits,

x1,2 =
50±

√
2500− 4

2
=

50± 49.960

2
= 49.980, 0.020000 ,

and we see that the root x2 = 0.02000 has only 1 significant digit of accuracy. This was
due to the subtraction of two nearly equal numbers. Let’s reformulate the formula for this
root as

−b−
√
b2 − 4ac

2a
=
−b−

√
b2 − 4ac

2a
∗ −b−

√
b2 − 4ac

−b−
√
b2 − 4ac

=
2c

−b+
√
b2 − 4ac

.

Using this formula for x2, again rounding all computaions to 5 significant digits, gives

x2 =
2

50 +
√

2496
=

2

50 + 49.960
=

2

99.960
= 0.020008 ,

accurate to 5 digits! Note using MATLAB we have

>> roots([1 -50 1])

ans =

49.9799919935936

0.0200080064064072



4. Recall that the machine epsilon of a computer is the smallest positive floating point number
eps such that fl(1+eps) > 1. We can determine eps on a given machine, for a given floating
point precision, by evaluating the expression

(1 + x)− 1 (∗)

for decreasing values of x. The smallest representable positive x for which (∗) is nonzero is
eps. On a binary machine it is enough to consider the sequence xn = 2−n for n = 1, 2, . . .
(Why?).

Write a MATLAB code to determine eps on the machine you are using, and compare it
with the value of eps in MATLAB (type ’eps’ in MATLAB to see this value). What is the
relationship between the two. (Note: you may find it useful to first issue the MATLAB
command ’format long e’ so that you are sure of when an expression computes identically
to 0). Include a copy of your code.

ANS: Here is the code:

function [y,n]=myeps

%

% MYEPS determines the machine epsilon. It returns the

% value and the corresponding power of 2.

%

n=0; x=1;

while ((1+x) > 1)

n=n-1; x=x/2;

end

y=2*x; % while loop exited with x=eps/2, so recover proper

n=n+1; % value, and set corresponding power of 2

Executing this function gives

>> [y,n]=myeps

y =

2.22044604925031e-16

n =

-52

showing the y = 2−52. Further, we see

>> eps-y

ans =

0

and we see that the εM we found (returned as y) is equal to MATLAB’s eps.



5. Consider evaluating the integrals

yn =

∫ 1

0

xn

x+ 10
dx

for n = 1, 2, . . . , 30.

(a) Show analytically that yn + 10yn−1 = 1/n.

(b) Show that y0 = log 11− log 10 and then use it with the recursion

yn =
1

n
− 10yn−1

to numerically generate y1 through y30

(c) Show for n ≥ 0 that 0 ≤ yn ≤ 1, and discuss the results in (b) in light of this.

ANS: For (a) we have

yn + 10yn−1 =

∫ 1

0

xn

x+ 10
dx+ 10

∫ 1

0

xn−1

x+ 10
dx =

∫ 1

0
xn−1dx =

1

n
,

and (b)

y0 =

∫ 1

0

x0

x+ 10
dx =

∫ 1

0

1

x+ 10
dx = ln 11− ln 10 .

Below is the MATLAB code and yn, n = 0, . . . , 30.

y = log(11)-log(10);

disp(’ ’)

disp(’n y_n ’)

disp(’----------’);

for n = 1:30

y = 1/n - 10*y;

disp([num2str(n),’ ’,num2str(y)])

end

n y_n

----------

1 0.046898

2 0.031018

3 0.023154

4 0.018465

5 0.015353

6 0.013138

7 0.011481

8 0.010194

9 0.0091673

10 0.008327

11 0.0076386

12 0.0069473

13 0.0074503



14 -0.0030745

15 0.097411

16 -0.91161

17 9.175

18 -91.694

19 916.9927

20 -9169.8773

21 91698.8211

22 -916988.1656

23 9169881.6991

24 -91698816.9496

25 916988169.5363

26 -9169881695.325

27 91698816953.2869

28 -916988169532.8334

29 9169881695328.369

30 -91698816953283.66

As for (c), note that 0 ≤ xn/(x+ 10) ≤ 1, hence yn is bounded by (1−0)∗1 = 1. However
the iterates start to diverge/blow up around the 16th iterate and begin to grow rapidly.
Why? Note that in the recursion formula yn = 1

n − 10yn−1 the previous iterate yn−1 is
multiplied by 10, so any error in that iterate is amplified by an order of magnitude. The
true limit is 0.


