Homework Set 2

Due Thursday, 30 May 2019

- 1. Find $P_2(x)$ for $f(x) = e^x \cos x$ expanded about $x_0 = 0$. Then find a bound on the error $|f(x) P_2(x)|$ in using P_2 to approximate f on [0, 1].
- 2. The floating point representation of a number is $x = \pm (0.a_1a_2...a_n)_{\beta} \times \beta^e$, where $a_1 \neq 0$, $-M \leq e \leq M$. Suppose $\beta = 2$, n = 8, and M = 4.
 - (a) Find the smallest positive (x_{min}) and largest positive (x_{max}) floating point numbers that can be represented. Give the answers in decimal form (base 10).
 - (b) Find the floating point number in this system that is closest to π .
- 3. Find the two roots of $x^2 50x + 1 = 0$, performing all calculations in 5 decimal digit arithmetic (i.e. $\beta = 10, t = 5$). Thus, round the answer of each arithmetic operation to 5 significant digits.
- 4. Recall that the machine epsilon of a computer is the smallest positive floating point number eps such that fl(1+eps) > 1. We can determine eps on a given machine, for a given floating point precision, by evaluating the expression

$$(1+x) - 1$$
 (*)

for decreasing values of x. The smallest representable positive x for which (*) is nonzero is *eps*. On a binary machine it is enough to consider the sequence $x_n = 2^{-n}$ for n = 1, 2, ... (Why?).

Write a MATLAB code to determine *eps* on the machine you are using, and compare it with the value of *eps* in MATLAB (type 'eps' in MATLAB to see this value). What is the relationship between the two. (Note: you may find it useful to first issue the MATLAB command 'format long e' so that you are sure of when an expression computes identically to 0). Include a copy of your code.

5. Consider evaluating the integrals

$$y_n = \int_0^1 \frac{x^n}{x+10} \, dx$$

for $n = 1, 2, \dots, 30$.

- (a) Show analytically that $y_n + 10y_{n-1} = 1/n$.
- (b) Show that $y_0 = \log 11 \log 10$ and then use it with the recursion

$$y_n = \frac{1}{n} - 10y_{n-1}$$

to numerically generate y_1 through y_{30}

(c) Show for $n \ge 0$ that $0 \le y_n \le 1$, and discuss the results in (b) in light of this.