1. Consider the polynomial $f(x)=x^{2}-x-2$.
(a) Find $P_{1}(x), P_{2}(x)$ and $P_{3}(x)$ for $f(x)$ about $x_{0}=0$. What is the relation between $P_{3}(x)$ and $f(x)$? Why?
(b) Find $P_{1}(x), P_{2}(x)$ and $P_{3}(x)$ for $f(x)$ about $x_{0}=2$. What is the relation between $P_{3}(x)$ and $f(x)$? Why?
(c) In general, given a polynomial $f(x)$ with degree $\leq m$, what can you say about $f(x)-$ $P_{n}(x)$ for $n \geq m$?

ANS: First note that $f^{\prime}(x)=2 x-1, f^{\prime \prime}(x)=2$, and $f^{\prime \prime \prime}(x) \equiv 0$. Then we have
(a) Let's find $P_{3}(x)$ which will also gives us $P_{1}(x)$ and $P_{2}(x)$. We have for $x_{0}=0$:

$$
\begin{aligned}
P_{3}(x) & =f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\frac{f^{(3)}\left(x_{0}\right)}{3!}\left(x-x_{0}\right)^{3} \\
& =-2+(-1)(x-0)+\frac{2}{2}(x-0)^{2}+\frac{0}{6}(x-0)^{3} \\
& =-\mathbf{2}-\mathbf{x}+\mathbf{x}^{2}
\end{aligned}
$$

So, $P_{2}(x)=-2+(-1)(x-0)+\frac{2}{2}(x-0)^{2}=-\mathbf{2}-\mathbf{x}+\mathbf{x}^{\mathbf{2}}$, and $P_{1}(x)=-2+(-1)(x-0)=$ $-\mathbf{2}-\mathbf{x} . P_{3}(x)=f(x)$ because $f^{\prime \prime \prime}(x) \equiv 0$, and thus we must have $R_{3}(x) \equiv 0$.
(b) Again, we find $P_{3}(x)$ which also gives us $P_{1}(x)$ and $P_{2}(x)$. With $x_{0}=2$ we have:

$$
\begin{aligned}
P_{3}(x) & =f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\frac{f^{(3)}\left(x_{0}\right)}{3!}\left(x-x_{0}\right)^{3} \\
& =0+3(x-2)+\frac{2}{2}(x-2)^{2}+\frac{0}{3!}(x-0)^{3} \\
& =-\mathbf{2}-\mathbf{x}+\mathbf{x}^{2}
\end{aligned}
$$

So, $P_{2}(x)=0+3(x-0)+\frac{2}{2}(x-2)^{2}=-\mathbf{2}-\mathbf{x}-\mathbf{x}^{\mathbf{2}}$, and $P_{1}(x)=0+3(x-2)=\mathbf{3} \mathbf{x}-\mathbf{6}$.
And again, as in (a), $P_{3}(x)=f(x)$ because $f^{\prime \prime \prime}(x) \equiv 0$.
(c) We will have that $f(x)-P_{n}(x) \equiv 0$ since $f(x)$ is a polynomial of degree at most m, thus $f^{(n+1)}(x) \equiv 0$ when $n \geq m$, hence the error term is identically zero.
2. Find both $P_{2}(x)$ and $P_{3}(x)$ for $f(x)=\cos x$ about $x_{0}=0$, and use them to approximate $\cos (0.1)$. Show that in each case the remainder term provides an upper bound for the true error.

ANS: First note that $f^{\prime}(x)=-\sin x, f^{\prime \prime}(x)=-\cos x, f^{\prime \prime \prime}(x)=\sin x$, and $f^{\prime \prime \prime \prime}(x)=\cos x$. Let's find $P_{3}(x)$ which will also gives us $P_{2}(x)$. We have for $x_{0}=0$:

$$
\begin{aligned}
P_{3}(x) & =f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\frac{f^{(3)}\left(x_{0}\right)}{3!}\left(x-x_{0}\right)^{3} \\
& =1+0(x-0)+\frac{(-1)}{2}(x-0)^{2}+\frac{0}{6}(x-0)^{3} \\
& =\mathbf{1}-\frac{\mathbf{x}^{2}}{\mathbf{2}}
\end{aligned}
$$

Since $f^{(3)}(0)=0$ we also have $P_{2}(x)=\mathbf{1}-\mathbf{x}^{\mathbf{2}} / \mathbf{2}$, so in this case $P_{3}(x) \equiv P_{2}(x)$. We have $P_{3}(0.1)=P_{2}(0.1)=1-(0.1)^{2} / 2=1-1 / 200=199 / 200=0.995$. Since both Taylor polynomials are the same the error in both cases is

$$
|\cos (0.1)-0.995| \approx 4.165278025713981 e-06
$$

From Taylor's theorem, the error that results from using $P_{2}(x)$ as an approximate (note $n=2$) is

$$
\begin{aligned}
|\cos 0.1-0.995| & =\left|\frac{f^{(3)}\left(\xi_{x}\right)}{3!}(0.1-0)^{3}\right| \quad \text { for } \xi_{x} \in(0,0.1) \\
& =\left|\sin \left(\xi_{x}\right) / 6000\right| \quad \text { for } \xi_{x} \in(0,0.1) \\
& \leq \sin (0.1) / 6000 \\
& \approx 1.663890277447136 e-05
\end{aligned}
$$

Now, again from Taylor's Theorem, the error using $P_{3}(x)$ we have (note $n=3$)

$$
\begin{aligned}
|\cos 0.1-0.995| & =\left|\frac{f^{(4)}\left(\xi_{x}\right)}{4!}(0.1-0)^{4}\right| \quad \text { for } \xi_{x} \in(0,0.1) \\
& =\left|\cos \left(\xi_{x}\right) / 240000\right| \quad \text { for } \xi_{x} \in(0,0.1) \\
& \leq \cos (0) / 240000 \\
& \approx 4.166666666666667 e-06
\end{aligned}
$$

So in each case an upper bound derived using the error term for Talyor polynomials is indeed larger than the actual error.
3. Consider $f(x)=e^{x}$, and find a general formula for the Taylor polynomial $P_{n}(x)$ for f about $x_{0}=0$.
(a) Using the remainder term, find a minimum value of n necessary for $P_{n}(x)$ to approximate $f(x)$ to within 10^{-6} on $[0,0.5]$.
(b) Prove that $f(x)$ analytic on $(-\infty, \infty)=\mathbb{R}$.

ANS: Note that $f^{(n)}(x)=e^{x}$ so for $n \geq 0$, with $x_{0}=0$, we have

$$
\begin{aligned}
P_{n}(x) & =\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} \\
& =\sum_{k=0}^{n} \frac{1}{k!} x^{k} \\
& =1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}
\end{aligned}
$$

(a) The remainder term is given by $R_{n}(x)=\frac{f^{(n+1)}\left(\xi_{x}\right)}{(n+1)!} x^{n+1}=\frac{e^{\xi_{x}}}{(n+1)!} x^{n+1}$ for $\xi_{x} \in$ $(0,0.5)$, so we need to find the minimum value of n such that

$$
\max _{x \in[0,0.5]}\left|R_{n}(x)\right|=\max _{x \in[0,0.5]} \frac{e^{\xi_{x}}}{(n+1)!} x^{n+1} \leq \frac{e^{1 / 2}}{(n+1)!} \frac{1}{2^{n+1}} \leq 10^{-6}
$$

or we need the minimum n such that

$$
2^{n+1}(n+1)!\geq e^{1 / 2} \times 10^{6} \approx 1648721.270700128
$$

Just trying some values of n on the right one sees that $2^{7} \times 7!=654120$ and $2^{8} \times 8!=$ 10321920, so with $n+1=8$ we see that one must have $n \geq 7$.
(b) We need to show that for each value of $x \in \mathbb{R}$ that
$\lim _{n \rightarrow \infty}\left|e^{x}-P_{n}(x)\right|=\lim _{n \rightarrow \infty}\left|f(x)-P_{n}(x)\right|=\lim _{n \rightarrow \infty}\left|R_{n}(x)\right|=\lim _{n \rightarrow \infty}\left|\frac{f^{n+1}\left(\xi_{x}\right)}{(n+1)!}(x-0)^{n+1}\right|=0$,
To do so, FIX an $x \in \mathbb{R}$ and note that there must exist a postive integer M (i.e., $M \in\{1,2,3,4, \ldots\})$ such that $M>|x|$. Why? Because x is fixed. Suppose $x=$ $\pm 134,665,323.33452$, take $M=200,000,000$ if you like, or $M=134,665,324$. Also, since ξ_{x} lies in the interval between x and $x_{0}=0$, then $\left|\xi_{x}\right|<M$. So once $n>M$,

$$
\begin{aligned}
\left|R_{n}(x)\right| & =\left|\frac{e^{\xi_{x}}}{(n+1)!}(x-0)^{n+1}\right| \leq\left|\frac{e^{M}}{(n+1)!} M^{n+1}\right|=e^{M} \times \frac{M * M * M * \cdots * M}{1 * 2 * 3 * \cdots *(n+1)} \\
& =e^{M} \times\left(\frac{M}{1} * \frac{M}{2} * \frac{M}{3} \cdots * \frac{M}{M-1} * \frac{M}{M} * \frac{M}{M+1} * \frac{M}{M+2} * \cdots * \frac{M}{(n+1)}\right) \\
& =e^{M} \times\left(\frac{M}{1} * \frac{M}{2} * \frac{M}{3} \cdots * \frac{M}{M-1} * \frac{M}{M}\right) *\left(\frac{M}{M+1} * \frac{M}{M+2} * \cdots * \frac{M}{(n+1)}\right)
\end{aligned}
$$

Note that since x is fixed the first two terms above are bounded. What is true about each ratio in the last term? You should be able to complete the proof from here.
4. Given a function $f(x)$, use Taylor approximations to derive a second order one-sided approximation to $f^{\prime}\left(x_{0}\right)$ is given by

$$
f^{\prime}\left(x_{0}\right)=a f\left(x_{0}\right)+b f\left(x_{0}+h\right)+c f\left(x_{0}+2 h\right)+O\left(h^{2}\right) .
$$

What is the precise form of the error term? Using the formula approximate $f^{\prime}(1)$ where $f(x)=e^{x}$ for $h=1 /\left(2^{p}\right)$ for $p=1: 15$. Form a table with columns giving h, the approximation, absolute error and absolute error divided by h^{2}. For each indicate to which values they are converging. Finally, verify that the last column appears to be converging to a value derived using the error term.
ANS: We have the following Taylor expansions:

$$
\begin{aligned}
f\left(x_{0}\right) & =f\left(x_{0}\right) \\
f\left(x_{0}+h\right) & =f\left(x_{0}\right)+h f^{\prime}\left(x_{0}\right)+\frac{1}{2} h^{2} f^{\prime \prime}\left(x_{0}\right)+\frac{1}{6} h^{3} f^{\prime \prime \prime}\left(\xi_{1}\right) \quad \text { where } \xi_{1} \in\left(x_{0}, x_{0}+h\right) \\
f\left(x_{0}+2 h\right) & =f\left(x_{0}\right)+2 h f^{\prime}\left(x_{0}\right)+2 h^{2} f^{\prime \prime}\left(x_{0}\right)+\frac{4}{3} h^{3} f^{\prime \prime \prime}\left(\xi_{2}\right) \quad \text { where } \xi_{2} \in\left(x_{0}, x_{0}+2 h\right)
\end{aligned}
$$

Forming the linear combination gives: $a f\left(x_{0}\right)+b f\left(x_{0}+h\right)+c f\left(x_{0}+2 h\right)=$

$$
(a+b+c) f\left(x_{0}\right)+(h b+2 h c) f^{\prime}\left(x_{0}\right)+\left(\frac{1}{2} h^{2} b+2 h^{2} c\right) f^{\prime \prime}\left(x_{0}\right)+\frac{1}{6} h^{3} b f^{\prime \prime \prime}\left(\xi_{1}\right)+\frac{4}{3} h^{3} c f^{\prime \prime \prime}\left(\xi_{2}\right)
$$

Since we have three unknowns a, b, and c , we choose them so that $f^{\prime}\left(x_{0}\right)$ is multiplied by 1 , and $f\left(x_{0}\right)$ and $f^{\prime \prime}\left(x_{0}\right)$ are multiplied by 0 . Thus a, b, and c must satisfy

$$
\begin{aligned}
a+b+c & =0 \\
h b+2 h c & =1 \quad \Rightarrow \quad a=-\frac{-3}{2 h}, b=\frac{4}{2 h}, c=\frac{-1}{2 h} . \\
\frac{1}{2} h^{2} b+2 h^{2} c & =0
\end{aligned}
$$

Using these values gives us the approximation

$$
f^{\prime}\left(x_{0}\right) \approx \frac{-3 f\left(x_{0}\right)+4 f\left(x_{0}+h\right)-f\left(x_{0}+2 h\right)}{2 h} .
$$

Error term? We have

$$
\frac{1}{6} h^{3} b f^{\prime \prime \prime}\left(\xi_{1}\right)+\frac{4}{3} h^{3} c f^{\prime \prime \prime}\left(\xi_{2}\right)=\frac{1}{3} h^{2}\left(f^{\prime \prime \prime}\left(\xi_{1}\right)-2 f^{\prime \prime \prime}\left(\xi_{2}\right)\right)=-\frac{1}{3} h^{2} f^{\prime \prime \prime}(\xi), \quad \xi \in\left(x_{0}, x_{0}+2 h\right)
$$

so as $h \rightarrow 0, \mid$ error $/ h^{2} \mid$ should approach $\left|\frac{1}{3} f^{\prime \prime \prime}\left(x_{0}\right)\right|=\frac{1}{3} e \approx 9.0609 e-01$.

h	err	err/h^2
$5.0000 \mathrm{e}-01$	$3.3543 e-01$	$1.3417 e+00$
$2.5000 \mathrm{e}-01$	$6.8607 e-02$	$1.0977 \mathrm{e}+00$
$1.2500 \mathrm{e}-01$	$1.5566 \mathrm{e}-02$	$9.9623 \mathrm{e}-01$
$6.2500 \mathrm{e}-02$	$3.7103 \mathrm{e}-03$	$9.4983 \mathrm{e}-01$
$3.1250 \mathrm{e}-02$	$9.0590 \mathrm{e}-04$	$9.2764 \mathrm{e}-01$
$1.5625 \mathrm{e}-02$	$2.2383 \mathrm{e}-04$	$9.1679 \mathrm{e}-01$
$7.8125 \mathrm{e}-03$	$5.5629 \mathrm{e}-05$	$9.1142 \mathrm{e}-01$
$3.9062 \mathrm{e}-03$	$1.3866 \mathrm{e}-05$	$9.0875 \mathrm{e}-01$

$1.9531 \mathrm{e}-03$	$3.4615 \mathrm{e}-06$	$9.0742 \mathrm{e}-01$
$9.7656 \mathrm{e}-04$	$8.6475 \mathrm{e}-07$	$9.0676 \mathrm{e}-01$
$4.8828 \mathrm{e}-04$	$2.1611 \mathrm{e}-07$	$9.0644 \mathrm{e}-01$
$2.4414 \mathrm{e}-04$	$5.4019 \mathrm{e}-08$	$9.0629 \mathrm{e}-01$
$1.2207 \mathrm{e}-04$	$1.3512 \mathrm{e}-08$	$9.0679 \mathrm{e}-01$
$6.1035 \mathrm{e}-05$	$3.3896 \mathrm{e}-09$	$9.0989 \mathrm{e}-01$
$3.0518 \mathrm{e}-05$	$8.7578 \mathrm{e}-10$	$9.4036 \mathrm{e}-01$

As $h \rightarrow 0$ so does the error until roundoff begins to creep into the calculation, which can be seen in the last few entries since the \mid error $/ h^{2} \mid$ column approaches $e / 3$ but then starts to move away from it.
5. MATLAB: Download and modify the m-file fp_example.m with
$\mathrm{N}=(1: 20)^{\prime} ; \quad \mathrm{h}=2 .^{\wedge}(-\mathrm{N})$;
Also, add a title to the graph containing your full name. Run the script, printout a hardcopy of the graph and hand it in.

