
Math 551 Introduction to Scientific Computing Spring 2019

SOLUTIONS: Homework Set 1

1. Consider the polynomial f(x) = x2 − x− 2.

(a) Find P1(x), P2(x) and P3(x) for f(x) about x0 = 0. What is the relation between
P3(x) and f(x)? Why?

(b) Find P1(x), P2(x) and P3(x) for f(x) about x0 = 2. What is the relation between
P3(x) and f(x)? Why?

(c) In general, given a polynomial f(x) with degree ≤ m, what can you say about f(x)−
Pn(x) for n ≥ m?

ANS: First note that f ′(x) = 2x− 1, f ′′(x) = 2, and f ′′′(x) ≡ 0. Then we have

(a) Let’s find P3(x) which will also gives us P1(x) and P2(x). We have for x0 = 0:

P3(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)2 +

f (3)(x0)

3!
(x− x0)3

= −2 + (−1)(x− 0) +
2

2
(x− 0)2 +

0

6
(x− 0)3

= −2− x + x2

So, P2(x) = −2+(−1)(x−0)+ 2
2(x− 0)2 = −2− x + x2, and P1(x) = −2+(−1)(x−0) =

−2− x. P3(x) = f(x) because f ′′′(x) ≡ 0, and thus we must have R3(x) ≡ 0.

(b) Again, we find P3(x) which also gives us P1(x) and P2(x). With x0 = 2 we have:

P3(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)2 +

f (3)(x0)

3!
(x− x0)3

= 0 + 3(x− 2) +
2

2
(x− 2)2 +

0

3!
(x− 0)3

= −2− x + x2

So, P2(x) = 0 + 3(x− 0) + 2
2(x− 2)2 = −2− x− x2, and P1(x) = 0 + 3(x− 2) = 3x− 6.

And again, as in (a), P3(x) = f(x) because f ′′′(x) ≡ 0.

(c) We will have that f(x) − Pn(x) ≡ 0 since f(x) is a polynomial of degree at most m,
thus f (n+1)(x) ≡ 0 when n ≥ m, hence the error term is identically zero.



2. Find both P2(x) and P3(x) for f(x) = cosx about x0 = 0, and use them to approximate
cos (0.1). Show that in each case the remainder term provides an upper bound for the true
error.

ANS: First note that f ′(x) = − sinx, f ′′(x) = − cosx, f ′′′(x) = sinx, and f ′′′′(x) = cosx.

Let’s find P3(x) which will also gives us P2(x). We have for x0 = 0:

P3(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)2 +

f (3)(x0)

3!
(x− x0)3

= 1 + 0(x− 0) +
(−1)

2
(x− 0)2 +

0

6
(x− 0)3

= 1− x2

2

Since f (3)(0) = 0 we also have P2(x) = 1− x2/2, so in this case P3(x) ≡ P2(x). We have
P3(0.1) = P2(0.1) = 1 − (0.1)2/2 = 1 − 1/200 = 199/200 = 0.995. Since both Taylor
polynomials are the same the error in both cases is

| cos (0.1)− 0.995| ≈ 4.165278025713981e−06.

From Taylor’s theorem, the error that results from using P2(x) as an approximate (note
n = 2) is

| cos 0.1− 0.995| =

∣∣∣∣∣f (3)(ξx)

3!
(0.1− 0)3

∣∣∣∣∣ for ξx ∈ (0, 0.1)

= |sin (ξx)/6000| for ξx ∈ (0, 0.1)

≤ sin (0.1)/6000

≈ 1.663890277447136e−05

Now, again from Taylor’s Theorem, the error using P3(x) we have (note n = 3)

| cos 0.1− 0.995| =

∣∣∣∣∣f (4)(ξx)

4!
(0.1− 0)4

∣∣∣∣∣ for ξx ∈ (0, 0.1)

= |cos (ξx)/240000| for ξx ∈ (0, 0.1)

≤ cos (0)/240000

≈ 4.166666666666667e−06

So in each case an upper bound derived using the error term for Talyor polynomials is
indeed larger than the actual error.



3. Consider f(x) = ex, and find a general formula for the Taylor polynomial Pn(x) for f
about x0 = 0.

(a) Using the remainder term, find a minimum value of n necessary for Pn(x) to approx-
imate f(x) to within 10−6 on [0, 0.5].

(b) Prove that f(x) analytic on (−∞,∞) = R.

ANS: Note that f (n)(x) = ex so for n ≥ 0, with x0 = 0, we have

Pn(x) =
n∑
k=0

f (k)(0)

k!
xk

=
n∑
k=0

1

k!
xk

= 1 + x+
x2

2!
+ · · ·+ xn

n!

(a) The remainder term is given by Rn(x) =
f (n+1)(ξx)

(n+ 1)!
xn+1 =

eξx

(n+ 1)!
xn+1 for ξx ∈

(0, 0.5), so we need to find the minimum value of n such that

max
x∈[0,0.5]

|Rn(x)| = max
x∈[0,0.5]

eξx

(n+ 1)!
xn+1 ≤ e1/2

(n+ 1)!

1

2n+1
≤ 10−6,

or we need the minimum n such that

2n+1(n+ 1)! ≥ e1/2 × 106 ≈ 1648721.270700128

Just trying some values of n on the right one sees that 27 × 7! = 654120 and 28 × 8! =
10321920, so with n+ 1 = 8 we see that one must have n ≥ 7.

(b) We need to show that for each value of x ∈ R that

lim
n→∞

|ex − Pn(x)| = lim
n→∞

|f(x)− Pn(x)| = lim
n→∞

|Rn(x)| = lim
n→∞

∣∣∣∣fn+1(ξx)

(n+ 1)!
(x− 0)n+1

∣∣∣∣ = 0,

To do so, FIX an x ∈ R and note that there must exist a postive integer M (i.e.,
M ∈ {1, 2, 3, 4, . . .}) such that M > |x|. Why? Because x is fixed. Suppose x =
±134,665,323.33452, take M = 200,000,000 if you like, or M = 134,665,324. Also, since
ξx lies in the interval between x and x0 = 0, then |ξx| < M . So once n > M ,

|Rn(x)| =

∣∣∣∣ eξx

(n+ 1)!
(x− 0)n+1

∣∣∣∣ ≤ ∣∣∣∣ eM

(n+ 1)!
Mn+1

∣∣∣∣ = eM × M ∗M ∗M ∗ · · · ∗M
1 ∗ 2 ∗ 3 ∗ · · · ∗ (n+ 1)

= eM ×
(
M

1
∗ M

2
∗ M

3
· · · ∗ M

M − 1
∗ M
M
∗ M

M + 1
∗ M

M + 2
∗ · · · ∗ M

(n+ 1)

)
= eM ×

(
M

1
∗ M

2
∗ M

3
· · · ∗ M

M − 1
∗ M
M

)
∗
(

M

M + 1
∗ M

M + 2
∗ · · · ∗ M

(n+ 1)

)
Note that since x is fixed the first two terms above are bounded. What is true about
each ratio in the last term? You should be able to complete the proof from here.



4. Given a function f(x), use Taylor approximations to derive a second order one-sided ap-
proximation to f ′(x0) is given by

f ′(x0) = af(x0) + bf(x0 + h) + cf(x0 + 2h) +O(h2) .

What is the precise form of the error term? Using the formula approximate f ′(1) where
f(x) = ex for h = 1/(2p) for p = 1 : 15. Form a table with columns giving h, the
approximation, absolute error and absolute error divided by h2. For each indicate to which
values they are converging. Finally, verify that the last column appears to be converging
to a value derived using the error term.

ANS: We have the following Taylor expansions:

f(x0) = f(x0)

f(x0 + h) = f(x0) + hf ′(x0) + 1
2h

2f ′′(x0) + 1
6h

3f ′′′(ξ1) where ξ1 ∈ (x0, x0 + h)

f(x0 + 2h) = f(x0) + 2hf ′(x0) + 2h2f ′′(x0) + 4
3h

3f ′′′(ξ2) where ξ2 ∈ (x0, x0 + 2h)

Forming the linear combination gives: af(x0) + bf(x0 + h) + cf(x0 + 2h) =

(a+ b+ c)f(x0) + (hb+ 2hc)f ′(x0) + (
1

2
h2b+ 2h2c)f ′′(x0) +

1

6
h3bf ′′′(ξ1) +

4

3
h3cf ′′′(ξ2) .

Since we have three unknowns a, b, and c, we choose them so that f ′(x0) is multiplied by
1, and f(x0) and f ′′(x0) are multiplied by 0. Thus a, b, and c must satisfy

a+ b+ c = 0
hb+ 2hc = 1

1
2h

2b+ 2h2c = 0
⇒ a = −−32h , b = 4

2h , c = −1
2h .

Using these values gives us the approximation

f ′(x0) ≈
−3f(x0) + 4f(x0 + h)− f(x0 + 2h)

2h
.

Error term? We have

1

6
h3bf ′′′(ξ1) +

4

3
h3cf ′′′(ξ2) =

1

3
h2(f ′′′(ξ1)− 2f ′′′(ξ2)) = −1

3
h2f ′′′(ξ), ξ ∈ (x0, x0 + 2h) ,

so as h→ 0, |error/h2| should approach |13f
′′′(x0)| = 1

3e ≈ 9.0609e− 01.

h err err/h^2

-------------------------------------

5.0000e-01 3.3543e-01 1.3417e+00

2.5000e-01 6.8607e-02 1.0977e+00

1.2500e-01 1.5566e-02 9.9623e-01

6.2500e-02 3.7103e-03 9.4983e-01

3.1250e-02 9.0590e-04 9.2764e-01

1.5625e-02 2.2383e-04 9.1679e-01

7.8125e-03 5.5629e-05 9.1142e-01

3.9062e-03 1.3866e-05 9.0875e-01



1.9531e-03 3.4615e-06 9.0742e-01

9.7656e-04 8.6475e-07 9.0676e-01

4.8828e-04 2.1611e-07 9.0644e-01

2.4414e-04 5.4019e-08 9.0629e-01

1.2207e-04 1.3512e-08 9.0679e-01

6.1035e-05 3.3896e-09 9.0989e-01

3.0518e-05 8.7578e-10 9.4036e-01

As h→ 0 so does the error until roundoff begins to creep into the calculation, which can
be seen in the last few entries since the |error/h2| column approaches e/3 but then starts
to move away from it.



5. MATLAB: Download and modify the m-file fp example.m with

N= (1:20)’; h=2.^(-N);

Also, add a title to the graph containing your full name. Run the script, printout a
hardcopy of the graph and hand it in.
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or

 Dr. Johnston's amazing graph!


