1. Consider the polynomial $f(x)=x^{2}-x-2$.
(a) Find $P_{1}(x), P_{2}(x)$ and $P_{3}(x)$ for $f(x)$ about $x_{0}=0$. What is the relation between $P_{3}(x)$ and $f(x)$? Why?
(b) Find $P_{1}(x), P_{2}(x)$ and $P_{3}(x)$ for $f(x)$ about $x_{0}=2$. What is the relation between $P_{3}(x)$ and $f(x)$? Why?
(c) In general, given a polynomial $f(x)$ with degree $\leq m$, what can you say about $f(x)-$ $P_{n}(x)$ for $n \geq m$?
2. Find both $P_{2}(x)$ and $P_{3}(x)$ for $f(x)=\cos x$ about $x_{0}=0$, and use them to approximate $\cos (0.1)$. Show that in each case the remainder term provides an upper bound for the true error.
3. Consider $f(x)=e^{x}$, and find a general formula for the Taylor polynomial $P_{n}(x)$ for f about $x_{0}=0$.
(a) Using the remainder term, find a minimum value of n necessary for $P_{n}(x)$ to approximate $f(x)$ to within 10^{-6} on $[0,0.5]$.
(b) Prove that $f(x)$ analytic on $(-\infty, \infty)=\mathbb{R}$.
4. Given a function $f(x)$, use Taylor approximations to derive a second order one-sided approximation to $f^{\prime}\left(x_{0}\right)$ is given by

$$
f^{\prime}\left(x_{0}\right)=a f\left(x_{0}\right)+b f\left(x_{0}+h\right)+c f\left(x_{0}+2 h\right)+O\left(h^{2}\right) .
$$

What is the precise form of the error term? Using the formula approximate $f^{\prime}(1)$ where $f(x)=e^{x}$ for $h=1 /\left(2^{p}\right)$ for $p=1: 15$. Form a table with columns giving h, the approximation, absolute error and absolute error divided by h^{2}. For each indicate to which values they are converging. Finally, verify that the last column appears to be converging to a value derived using the error term.
5. MATLAB: Download and modify the m-file fp_example.m with
$N=(1: 20)^{\prime} ; \quad h=2 .^{\wedge}(-N) ;$
Also, add a title to the graph containing your full name. Run the script, printout a hardcopy of the graph and hand it in.

