

Mimetic Methods and why they are better

Blair Perot

Theoretical and Computational Fluid Dynamics Laboratory

February 25, 2015

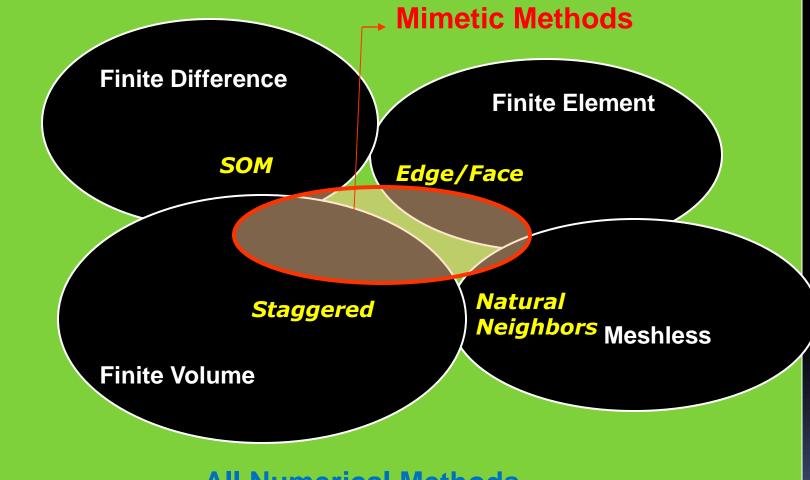
Numerical Methods: Are more than Mathematics

Math: Accuracy Stability Convergence Consistency

Mimetic methods mimic the physics.

Physics: Conservation Spurious Modes Wave propagation Maximum/minimum Constraints

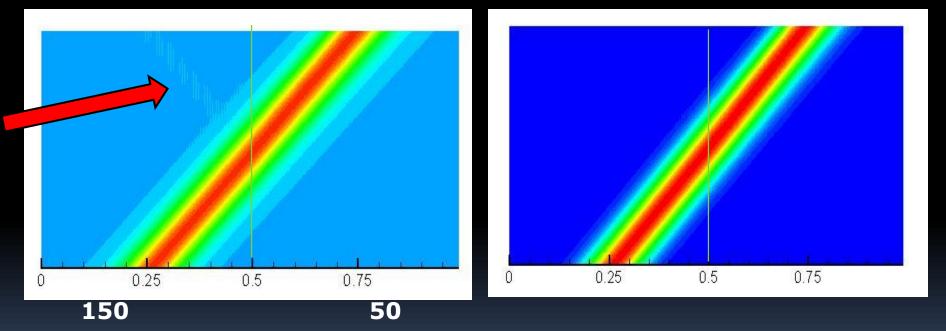
Relationship



All Numerical Methods

Mimetic Advection $\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T = 0$

1D Advection: Change in mesh size (3x more mesh on the right side)



Central B Spurious Wave Reflection

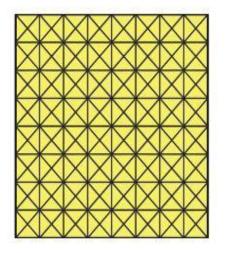
Box Method

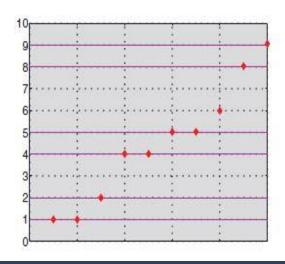
Eigenvalues: Theory

Vector Laplacian

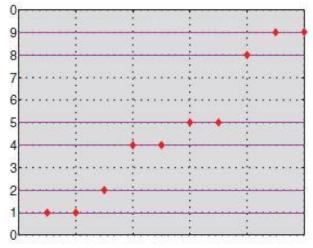
$$\nabla \times \nabla \times \mathbf{v} - \nabla (\nabla \cdot \mathbf{v}) = \lambda \mathbf{v} \qquad \lambda = m^2 + n^2$$

1,1,2,4,4,5,5,8,...





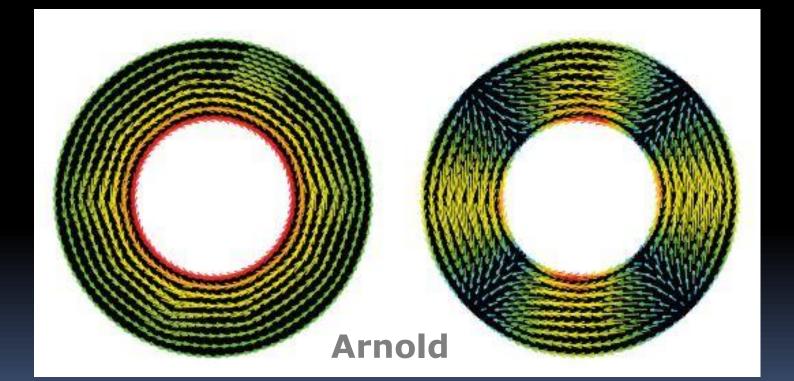
node



Linear FE

Nedelec FE $u = \mathbf{v} \cdot \mathbf{t}$ edge

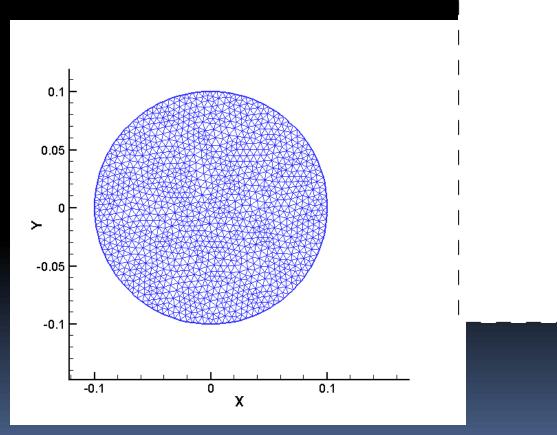
Eigenvectors: Practice $\nabla \times \nabla \times \mathbf{v} - \nabla (\nabla \cdot \mathbf{v}) = f$

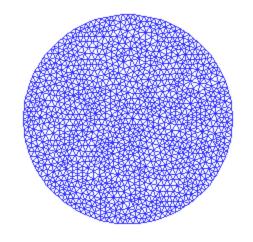


Linear FE

Nedelec FE

Mimetic Surface Tension





Overview Use Exact Discretization

Separate DiscretizationPDE to LAfromApproximationLA to square LA

- Do ALL discretization exactly.
- This means that the calculus and the physics remain exact.
- Numerical approximation in material laws.
- Which are engineering approximations already.
- Numerical approximation goes with physical approximation.

Discrete Calculus: Part 1

Exact Discretization

$$\frac{\partial a}{\partial t} + \nabla \cdot \mathbf{b} = \mathbf{0} \quad \Longrightarrow \quad \left[\mathbf{A} \quad \mathbf{B} \right] \left(\begin{array}{c} \mathbf{a} \\ \mathbf{b} \end{array} \right] = \vec{\mathbf{r}}$$

Infinite Dimensional Finite Dimensional

Partial Differential Eqn. Matrix Problem

Basic unknowns are integral quantities. Collect infinite data into finite groups.

Discrete Calculus: Part 2

Solution <u>requires</u> Approximation

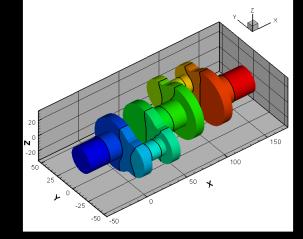
 $\begin{bmatrix} \mathbf{A} & \mathbf{B} \end{bmatrix} \begin{pmatrix} \vec{\mathbf{a}} \\ \vec{\mathbf{b}} \end{pmatrix} = \vec{\mathbf{r}} \implies \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \begin{pmatrix} \vec{\mathbf{a}} \\ \vec{\mathbf{b}} \end{pmatrix} = \begin{pmatrix} \vec{\mathbf{r}} \\ \mathbf{0} \end{pmatrix}$

Underdetermined

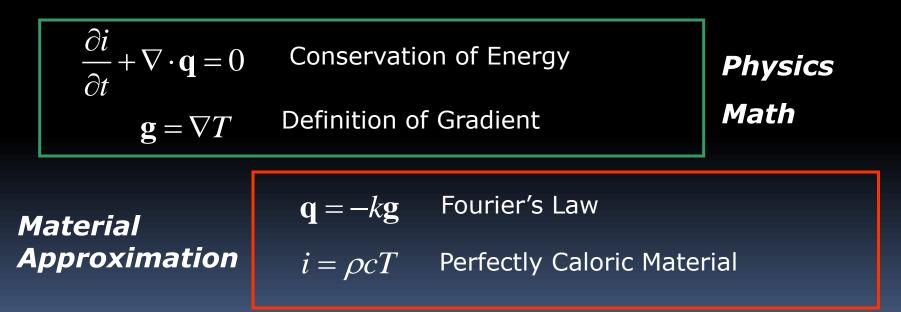
Unique Square

Relate discrete unknowns to each other. This relation is a material law. Also related to interpolation. Also related to discrete inner products

Example: Heat Eqn $\frac{\partial(\rho cT)}{\partial t} = \nabla \cdot k \nabla T$



Components of the Physical Equation



Exact Discretization

Perfect representation of Physics and Calculus

$$\int_{\tilde{c}} i dV |^{n+1} - \int_{\tilde{c}} i dV |^{n} + \sum_{\tilde{f}} \int dt \int_{\tilde{f}} \mathbf{q} \cdot \mathbf{n} dA_{\tilde{f}} = 0$$

$$\int_{e} \mathbf{g} \cdot d\mathbf{l} = T_{n2} - T_{n1}$$

$$I_{\tilde{c}}^{n+1} - I_{\tilde{c}}^{n} + \mathbf{D}Q_{\tilde{f}} = 0$$

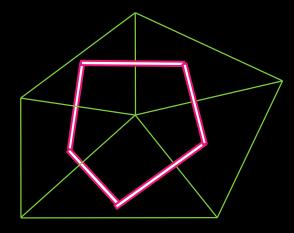
$$g_{e} = \mathbf{G}T_{n}$$
Exact

12

Solution

Numerical Approximation of Constitutive Eqns.

 $Q_{\tilde{f}} = -M_1 g_e$ $I_{\tilde{c}} = M_2 T_n$



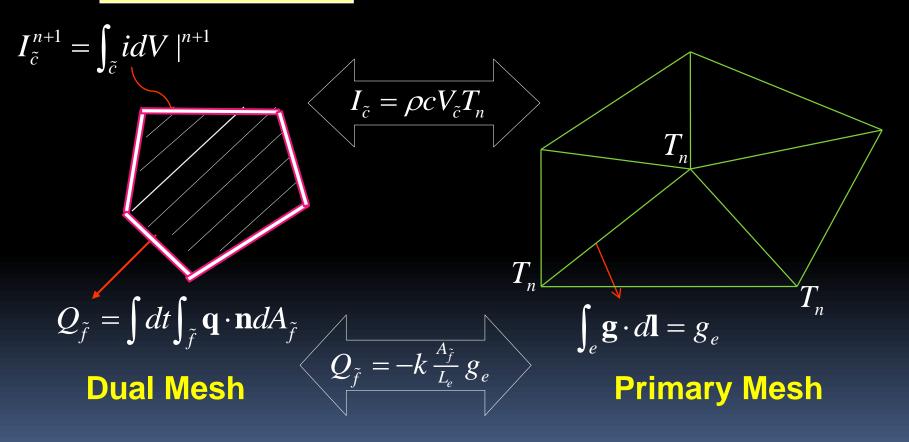
 $Q_{\tilde{f}} = -k \frac{A_{\tilde{f}}}{L_e} g_e$ $I_{\tilde{c}} = \rho c \overline{V_{\tilde{c}} T_n}$

Approximate Dependent on Mesh

Dual Mesh Viewpoint

$$I_{\tilde{c}}^{n+1}-I_{\tilde{c}}^{n}+\mathbf{D}Q_{\tilde{f}}=0$$

$$g_e = \mathbf{G}T_n$$



14

Properties

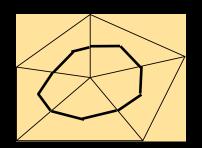
Conservation of Energy Entropy Production Maximum Principal

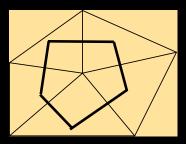
Any continuous principle for the PDE ...

All errors appear as imperfect material properties.

Variations

Choice of the Dual Mesh.





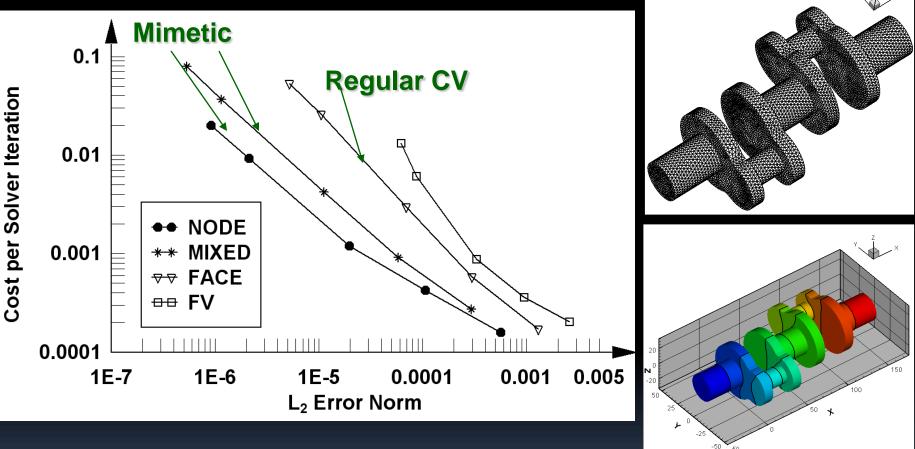
Median Dual

Voronoi Dual

Dual or Primary Node centered pressure. Cell centered pressure.

Choice of interpolation. polynomial reconstruction in cells. reconstruction in dual cells weighted interpolations (FE).

Results



Log scale

-50

References

• Mattiussi, C., An Analysis of Finite Volume, Finite Element, and Finite Difference Methods using some Concepts from Algebraic Topology, J. Computational Phys., **133**, 289-309, 1997.

• Perot, J. B., and Subramanian, V. Discrete Calculus Methods for Diffusion, J. Computational Phys., **224** (1), 59-81, 2007. http://www.ecs.umass.edu/mie/tcfd/Publications.html

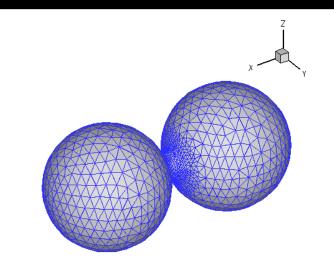
• J. B. Perot, Discrete Conservation Properties of Unstructured Mesh Schemes, Annual Reviews of Fluid Mechanics, **43**, 299–318, 2011. http://www.ecs.umass.edu/mie/tcfd/Publications.html

• E. Tonti, Why starting from differential equations for computational physics? J. Computational Phys., **257**, 1260–1290, 2014. http://www.discretephysics.org/papers/TONTI/TontiJCPWHY.pdf

Summary

Numerical Methods are changing.

- Exact Discretization Approx Solution.
- Works on all types of PDEs



Questions

Navier-Stokes Results

