
Mimetic Methods   
and why they are better

 

Blair Perot 
 

Theoretical and Computational Fluid Dynamics Laboratory 

 

February 25, 2015 



Numerical Methods: 
Are more than Mathematics 
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Math: 
 Accuracy 
 Stability 
 Convergence 
 Consistency 
 
 

 

 
Physics: 
 Conservation 
 Spurious Modes 
 Wave propagation 
 Maximum/minimum 
 Constraints 
 
 

 

Mimetic methods  
mimic the physics. 
 

 



Relationship 
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Finite Difference 
Finite Element 

Finite Volume 

Meshless 

SOM 

Staggered 

Edge/Face 

Natural 
Neighbors 

Mimetic Methods 

All Numerical Methods 



Mimetic Advection 
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Central     Box Method 
 
 

 

1D Advection: Change in mesh size 
 (3x more mesh on the right side) 
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Spurious Wave Reflection 



Eigenvalues: Theory 
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         Linear FE            Nedelec FE 
 
 

 

Vector Laplacian 
 2 2m n  

1,1,2,4,4,5,5,8,..  
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Eigenvectors: Practice 
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        Linear FE                Nedelec FE 
 
 

( )v v f   

Arnold 
 



Mimetic Surface Tension 
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Overview 
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Do ALL discretization exactly. 
This means that the calculus and the physics 
remain exact. 
 
Numerical approximation in material laws. 
Which are engineering approximations already. 
Numerical approximation goes with physical 
approximation. 

 
 

Separate Discretization 
from        Approximation 

PDE   to   LA 
LA  to  square LA 

Use Exact Discretization 
 



Discrete Calculus:  Part 1 
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Exact Discretization 

Partial Differential Eqn.     Matrix Problem 

Basic unknowns are integral quantities. 
Collect infinite data into finite groups. 
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Discrete Calculus:  Part 2 
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Solution requires Approximation 

Underdetermined      Unique Square 

Relate discrete unknowns to each other. 
This relation is a material law.  
Also related to interpolation. 
Also related to discrete inner products 
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Example: Heat Eqn 
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Components of the Physical Equation 
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Conservation of Energy 

g T Definition of Gradient 

Physics 

Math 

q gk  Fourier’s Law 

i cT Perfectly Caloric Material 

Material 
Approximation 



Exact Discretization 
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Perfect representation of Physics and Calculus 
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Solution 
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Numerical Approximation of Constitutive Eqns. 
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Dual Mesh Viewpoint 
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Properties 
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Conservation of Energy 

Entropy Production 

Maximum Principal 

Any continuous principle for 
the PDE … 

All errors appear as imperfect 
material properties. 



Variations 
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Choice of the 
Dual Mesh. 

Median Dual Voronoi Dual 

Dual or Primary 
 Node centered pressure. 
 Cell centered pressure. 

Choice of interpolation. 
 polynomial reconstruction in cells. 
 reconstruction in dual cells 
 weighted interpolations (FE). 



Results 
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Log scale 

Mimetic 

Regular CV 
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Summary 
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Numerical Methods 
are changing. 
 
Exact Discretization 
Approx Solution. 

 
Works on all types 
of PDEs 



Questions 
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Navier-Stokes 
Results 
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