1. Write up details of the solution to Ch.6, problem 18 (done in groups in class last Friday). Explain the steps.

2. A mason is contracted to build a patio retaining wall. The base of the wall is a row of 50 bricks, each supposedly 10 inches long separated by a 1/2 inch joint. Suppose that the actual length of each brick is random, each with expected value 10 and standard deviation 1/32 and each joint is random with mean 1/2 and standard deviation 1/16. Let L be the length of the resulting wall. Find the expected value, variance and standard deviation of L. What assumption do you need to make to do this?

3. In class we first showed that for two independent random variables $E(aX + bY) = aE(X) + bE(Y)$ and $V(aX + bY) = a^2V(X) + b^2V(Y)$. Show how to go from this to the statements in the notes that if X_1, \ldots, X_n are independent then $E(\sum_i a_iX_i) = \sum_i a_iE(X_i)$ and $V(\sum_i a_iX_i) = \sum_i a_i^2V(X_i) = a_1^2V(X_1) + \ldots + a_n^2V(X_n)$.

4. First show that $\text{Cov}(aX + b, cY + d) = ac\text{Cov}(X, Y)$. Then show that $\rho(aX + b, cY + d) = \rho(X, Y)$ if a and c are the same sign and $\rho(aX + b, cY + d) = -\rho(X, Y)$ if a and c are different signs (and so except for the possible sign change linear transforming variables does not change correlation.)

5. Ch. 7, Problem 37.

6. Suppose X and Y are jointly continuous with pdf $f_{X,Y}(x, y)$. Suppose that $E(X|Y = y) = c$, a constant. This means that $\int_x x f_{X|Y}(x|y)dx = \int_x x f_{X,Y}(x,y) / f_Y(y) dx = c$. Show that this means that $E(X) = \int_x \int_y x f_{X,Y}(x,y) dy dx = c$ and $E(XY) = cE(Y)$ and hence $\text{Cov}(X,Y) = 0$. Hint: in taking expectations with respect to the joint distribution note that $f_{X,Y}(x, y) = f_{X|Y}(x|y) f_Y(y)$.

7. Ch. 7, problem 22 (outlined in class).

8. Consider the GPA/ACT example done in class. Write out the details on getting the conditional distribution of Y (GPA) given X (ACT) = 20, including giving the mean and variance of Y given $X = 20$ and showing how to compute $P(Y > 3|X = 20)$.

Complete.