
DEPARTMENT OF MATHEMATICS AND STATISTICS
UNIVERSITY OF MASSACHUSETTS

MATH 233 SOME SOLUTIONS TO EXAM 2 Fall 2018

“Version A” refers to the regular exam and ”Version B” to the make-up

1. Version A. A particle moves along the curve r(t) = (t3/3, t2, 2t). Find the length of
the path traveled by the particle between t = 1 and t = 3.

Solution.

∫ 3

1

√√√√(∂x
∂t

)2

+

(
∂y

∂t

)2

+

(
∂z

∂t

)2

dt =
∫ 3

1

√
(t2)2 + (2t)2 + (2)2dt =

∫ 3

1

√
t4 + 4t2 + 4dt

=
∫ 3

1

√
(t2 + 2)2dt =

∫ 3

1
(t2 + 2)dt =

33

3
+ 2 ∗ 3− 13

3
− 2 ∗ 1 = 12

2

3

Version B. A particle moves along the curve r(t) = (t4/4, (
√

6/3)t3, (3/2)t2). Find the
length of the path traveled by the particle between t = 1 and t = 2.

Solution.

∫ 2

1

√√√√(∂x
∂t

)2

+

(
∂y

∂t

)2

+

(
∂z

∂t

)2

dt =
∫ 2

1

√
(t3)2 + (

√
6t2)2 + (3t)2dt =

=
∫ 2

1

√
(t3 + 3t)2dt =

∫ 2

1
(t3 + 3t)dt =

24

4
+ 3 ∗ 22

2
− 14

4
− 3 ∗ 12

2
= 8

1

4

2. Version A. Find the position vector function of a particle that has an acceleration
function

a(t) = et/2i + k,

an initial velocity v(0) = 2j, and an initial position r(0) = 0.

Solution.

v(t) =
∫
a(t) dt = 2et/2i + tk + C
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Since
v(0) = 2i + C = 2j,

we have C = 2j− 2i, and so

v(t) =
∫

a(t) dt = (2et/2 − 2)i + 2j + tk.

Integrating once again,

r(t) =
∫

v(t) dt = (4et/2 − 2t)i + 2tj + t2/2k + C′

Since r(0) = 0 = 4iC′, we have C′ = −4i. Finally,

r(t) =
∫

v(t) dt = (4et/2 − 2t− 4)i + 2tj + t2/2k.

Version B. Find the position vector function of a particle that has an acceleration
function

a(t) = cos(t/2)i + k,

an initial velocity v(0) = 3j, and an initial position r(0) = 0.

Solution.

v(t) =
∫
a(t) dt = 2 sin(t/2)i + tk + C

Since
v(0) = C = 3j,

we have C = 3j, and so

v(t) =
∫

a(t) dt = (2 sin(t/2))i + 3j + tk.

Integrating once again,

r(t) =
∫

v(t) dt = −4 cos(t/2)i + 3tj + t2/2k + C′

Since r(0) = 0 = −4i + C′, we have C′ = 4i.

Finally,

r(t) =
∫

v(t) dt = (−4 cos(t/2) + 4)i + 3tj + t2/2k.

3. Version A. Consider the function

f(x, y) =
x3y

x6 + y2
.

(a) Find the limit of f(x, y) as (x, y) approaches the origin along a straight line of slope
m, where m is a real number.

(b) Find the limit of f(x, y) as (x, y) approaches the origin along the curve y = x3.
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(c) Does lim
(x,y)→(0,0)

f(x, y) exist? Explain why or why not.

Solution. (a) For x 6= 0,

f(x,mx) =
x3(mx)

x6 + (mx)2
=

mx2

x4 +m2
.

The right side is as continuous function of x defined everywhere.

lim
x→0

mx2

x4 +m2
=

m02

04 +m2
= 0.

(b) For x 6= 0,

f(x, x3) =
x3(x3)

x6 + (x3)2
=

1

2
.

lim
x→0

1

2
=

1

2
.

(c) The limit does not exist at the origin because we found two different paths ap-
proaching the origin for which the function approached two different numbers.

Version B. Consider the function

f(x, y) =
x2y

x4 + 2y2
.

(a) Find the limit of the f(x, y) as (x, y) approaches the origin along a straight line of
slope m, where m is a real number.

(b) Find the limit of the f(x, y) as (x, y) approaches the origin along the curve y = x2.

(c) Does lim
(x,y)→(0,0)

f(x, y) exist? Explain why or why not.

Solution.

(a) For x 6= 0,

f(x,mx) =
x2(mx)

x4 + 2(mx)2
=

mx

x2 + 2m2
.

The right side is as continuous function of x defined everywhere.

lim
x→0

mx

x2 + 2m2
=

m(0)

02 +m2
= 0.

(b) For x 6= 0,

f(x, x2) =
x2(x2)

x4 + 2(x2)2
=

1

3
.

lim
x→0

1

3
=

1

3
.

(c) The limit does not exist at the origin because we found two different paths ap-
proaching the origin for which the function approached two different numbers.

Solution.
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4. Version A.

(a) Find the linear approximation to f(x, y) =
√
xy + 1 at the point (4, 6), and use

this to estimate f(3.9, 5.9).
(b) The volume of a square pyramid is measured as 270 cubic centimeters with a
possible error of ±3 cubic centimeters. Its height is measured as 10 centimeters, with
a possible error of ±0.1 centimeters. Use differentials to estimate the maximum error
in calculating the side length of the square base from the measured volume and height.
You must include units in your final answer. (Recall that the volume of a pyramid
with a square base of side length l and height h is V = 1

3
l2h .)

Solution. (a) The linear approximation to f(x, y) at (x0, y0) is given by

L(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0) .

Thus, we compute

f(4, 6) =
√

(4)(6) + 1 =
√

24 + 1 =
√

25 = 5 ,

fx(x, y) =
y

2
√
xy + 1

=⇒ f(4, 6) =
3

5
,

fy(x, y) =
x

2
√
xy + 1

=⇒ f(4, 6) =
2

5
,

and so

L(x, y) = 5 +
3

5
(x− 4) +

2

5
(x− 6) .

From this, we get the approximation

f(3.9, 5.9) ≈ L(3.9, 5.9) = 5 +
3

5
(−0.1) +

2

5
(−0.1) = 5− 0.1 = 4.9 .

(b) The base side length, in terms of V and h, is

l =

√
3V

h
=

√
3(270 cm3)

10 cm
= 9 cm .

The differential is then

dl =
1

2

√
3

V h
dV − 1

2

√
3V

h3
dh =

3

2lh
dV − 3V

2lh2
dh =

3

2lh
dV − l

2h
dh .

Note that one can get the second expression for the differential dl by differentiating
l2 = 3V/h, and one can also compute the total differential for V and solve for dl
to obtain the third, equivalent expression. Evaluating the differential for the given
measurements gives

dl =
1

60 cm2
dV − 9

20
dh

Plugging in errors of ±3 cm3 for dV and ∓0.1 cm for dh will give an estimate of maxi-
mum error in the measurement of l as

dl = ± 1

20
cm± 9

200
cm = ± 19

200
cm .
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Version B. (a) Explain why f(x, y) =
√
x2 + y2 + 1 is differentiable at (4, 8), and then

find the equation of the tangent plane to graph of z = f(x, y) when x = 4 and y = 8.
(b) The volume of a square pyramid is measured as 30 cubic centimeters with a pos-
sible error of ±1 cubic centimeters. Its height is measured as 10 centimeters, with a
possible error of ±0.3 centimeters. Use differentials to estimate the maximum error in
calculating the side length of the square base from the measured volume and height.
You must include units in your final answer. (Recall that the volume of a pyramid
with a square base of side length l and height h is V = 1

3
l2h .)

Solution. (a) The partials of f are

fx(x, y) =
x√

x2 + y2 + 1
, fy(x, y) =

y√
x2 + y2 + 1

.

These functions are algebraic functions of x and y and thus are continuous on their
domains, and so in particular are continuous at (4, 8). Since f has continuous first
partials at (4, 8), f is differentiable there.

The tangent plane is then given by

z − f(4, 8) = fx(4, 8)(x− 4) + fy(4, 8)(y − 8)

which gives

z − 9 =
4

9
(x− 4) +

8

9
(y − 8) ,

which may be simplified to

z =
4x+ 8y + 1

9
.

(b) The base side length, in terms of V and h, is

l =

√
3V

h
=

√
3(30 cm3)

10 cm
= 3 cm .

The differential is then

dl =
1

2

√
3

V h
dV − 1

2

√
3V

h3
dh =

3

2lh
dV − 3V

2lh2
dh =

3

2lh
dV − l

2h
dh .

Note that one can get the second expression for the differential dl by differentiating
l2 = 3V/h, and one can also compute the total differential for V and solve for dl
to obtain the third, equivalent expression. Evaluating the differential for the given
measurements gives

dl =
1

20 cm2
dV − 3

20
dh

Plugging in errors of ±1 cm3 for dV and ∓0.3 cm for dh will give an estimate of maxi-
mum error in the measurement of l as

dl = ± 1

20
cm± 9

200
cm = ± 19

200
cm .
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5. Version A. (a) Find the directional derivative of the function f(x, y) = ln(x2 + y2) in
the direction of v = 〈3,−2〉 at the point P = (1, 0).
(b) Find the maximum possible directional derivative of the function f(x, y) = ln(x2 +
y2) at the point P = (1, 0) and the unit vector in the direction in which it occurs.
Solution.

(a) ∇f =

〈
2x

x2 + y2
,

2y

x2 + y2

〉

so at P = (1, 0), we have ∇f(1, 0) = 〈2, 0〉. The unit vector in the direction of v is

u =
v

||v||
=

〈
3√
13
,
−2√

13

〉
.

Then Duf(1, 0) = ∇f(1, 0) · u =
6√
13

(b) The maximum possible directional derivative is equal to the magnitude of the
gradient vector and occurs in its direction. Thus the maximum directional deriva-
tive is equal to ||∇f(1, 0)|| = 2 and the unit vector in which it occurs is equal to
∇f(1, 0)/||∇f(1, 0)|| = 〈1, 0〉.
Version B. (a) Find the directional derivative of the function f(x, y) = xe−y in the
direction of v = 〈1, 2〉 at the point P = (1, 0).
(b) Find the maximum possible directional derivative of the function f(x, y) = xe−y

at the point P = (1, 0) and the unit vector in the direction in which it occurs.

Solution.

(a)

∇f = 〈e−y,−xe−y〉

so at P = (1, 0), we have ∇f(1, 0) = 〈1,−1〉. The unit vector in the direction of v is

u =
v

||v||
=

〈
1√
5
,

2√
5

〉
.

Then Duf(1, 0) = ∇f(1, 0) · u = − 1√
5
.

(b) The maximum possible directional derivative is equal to the magnitude of the
gradient vector and occurs in its direction. Thus the maximum directional deriva-
tive is equal to ||∇f(1, 0)|| =

√
2 and the unit vector in which it occurs is equal to

∇f(1, 0)/||∇f(1, 0)|| = 〈1/
√

2,−1/
√

2〉.

6. Version A. Find all local maxima, minima, and saddle points of f(x, y) = x3−3x+x2y2.
Be sure to specify the type of each point you find.

Solution. First we find all the critical points of the function f . Since f has continuous
partial derivatives, we have that if a critical point occurs at a point (x, y), then

∇f(x, y) = 〈 fx(x, y), fy(x, y)〉 = 〈3x2 − 3 + 2xy2, 2x2y〉 = 〈0, 0〉
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We have

2x2y = 0 =⇒ x = 0 or y = 0

if x = 0 then by 3x2 − 3 + 2xy2 = 0 we have 3 = 0 which is a contradiction.
if y = 0 then by 3x2 − 3 + 2xy2 = 0 we have 3x2 − 3 = 0 and therefore x = ±1.
therefore the only critical points of f are the points (1, 0) and (−1, 0). Since f has
continuous second partial derivatives we can use second derivative test to determine
wether a critical point is a local maximum or minimum. We calculate

D(x, y) = fxx(x, y)fyy(x, y)− f 2
xy(x, y)

We have

fxx(x, y) = 6x+ 2y2

fyy(x, y) = 2x2

fxy(x, y) = 4xy

and therefore

D(x, y) = (6x+ 2y2)2x2 − (4xy)2 = 12x3 + 4x2y2 − 16x2y2

We have

D(1, 0) = 12, fxx(1, 0) = 6 > 0 =⇒ (1, 0) is a local minimum.

D(−1, 0) = −12 < 0 =⇒ (−1, 0) is a saddle point.

Version B. Find and classify (i.e., local maximum, local minimum, saddle point, or
inconclusive) all critical points of the function:

f(x, y) = y3 − 3

2
y2 +

3

2
x2 − 3xy + 5.

Solution. Solve fx = 3x − 3y = 0 and fy = 3y2 − 3y − 3x = 0. The first equation
gives x = y. The second gives 3y2 − 6y = 0 which implies that y = 0 or y = 2. Hence
we have two critical points, (0, 0) and (2, 2).

At (0, 0), compute fxx = 3, fxy = −3 and fyy = −3 giving D = fxxfyy−f 2
xy = −9−9 =

−18 < 0. It follows that (0, 0) is a saddle point.

At (2, 2), compute fxx = 3, fxy = −3 and fyy = 6(3)−3 = 15. Then D = fxxfyy−f 2
xy =

45− 9 = 36 > 0 and since fxx > 0 it follows that (0, 0) is a local minimum.

7. Version A. Use the method of Lagrange multipliers to find the absolute maximum and
absolute minimum values of the function f(x, y) = xey on the curve given by x2+y2 = 2.

Solution. Let g(x, y) = x2 + y2. Then ∇f = 〈ey, xey〉 and ∇g = 〈2x, 2y〉. Setting
∇f = λ∇g, we have the system of equations:
ey = λ2x
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xey = λ2y
x2 + y2 = 2
Notice that x 6= 0 and λ 6= 0, since otherwise by the first equation, we would have
ey = 0, which is impossible. Thus, we can divide the second equation by x to obtain
ey = λ2y

x
. Setting this equal to the first equation, we obtain λ2y

x
= λ2x. Dividing by

2λ and multiplying by x, we obtain y = x2. Plugging this into the third equation, we
obtain x2 +x4 = 2 or x4 +x2− 2 = 0. We can now solve this for x by factoring the left
hand side into (x2 + 2)(x2− 1) = 0. Thus either x2 = −2 or x2 = 1. The first equation
has no solutions and the second equation has two solutions, namely x = −1, 1. The
corresponding y−values are both 1 since y = x2. Thus we have two points to compare,
(−1, 1) and (1, 1). Plugging them into f , we obtain f(−1, 1) = −e and f(1, 1) = e.
Thus, the absolute maximum of f on the curve is e and the absolute minimum is −e.

Version B. Use the method of Lagrange multipliers to find the absolute maximum and
absolute minimum values of the function f(x, y) = exy on the curve given by x2+y2 = 2.

Solution. Let g(x, y) = x2 + y2. Then ∇f = 〈yexy, xexy〉 and ∇g = 〈2x, 2y〉. Setting
∇f = λ∇g, we have the system of equations:
yexy = λ2x
xexy = λ2y
x2 + y2 = 2
Notice that λ 6= 0, since otherwise, by the first and second equations, we would have
that x = y = 0, which contradicts the third equation. Moreover, x 6= 0, since otherwise,
by the first equation, we would have that y = 0, once again contradicting the third
equation. Similarly, y 6= 0. Thus, we can divide the first equation by y to obtain
exy = λ2x

y
and we can divide the second equation by x to obtain exy = λ2y

x
. Setting

these equal, we obtain λ2y
x

= λ2x
y

. Cross multiplying and dividing by 2λ, we have

y2 = x2. Plugging this into the third equation, we have x2 + x2 = 2. Solving for x, we
obtain x = −1, 1. Since y2 = x2, the corresponding y−values for x = −1 are y = −1, 1
and the corresponding y−values for x = 1 are also y = −1, 1. Thus we have four points
to compare, (−1,−1), (−1, 1), (1,−1), and (1, 1). Plugging them into f , we obtain
f(−1,−1) = e, f(−1, 1) = e−1, f(1,−1) = e−1, and f(1, 1) = e. Thus, the absolute
maximum of f on the curve is e and the absolute minimum is e−1.

Solution.
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Scratch paper


