Chapter 3.1, 3.2 **Numerical descriptive measures**

Graphs provide a global/qualitative description of a sample, but they are imprecise for use in statistical inferences.

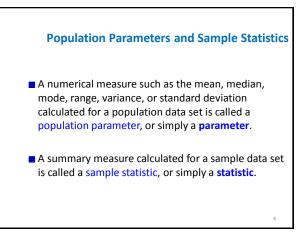
We use numerical measures which can be calculated for either a sample (these measures are called statistics) or a population (parameters).

- Measures of location
- Measures of variability

Measures of central tendency (ungrouped data)

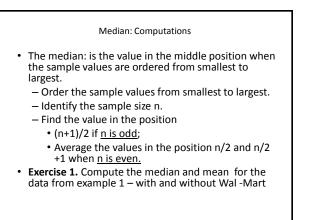
- The **mode**: is the sample value that occurs most frequently.
- The **median**: is the value that falls in the middle position when the sample values are ordered from the smallest to the largest.
- The <u>mean</u>: is the average value, the balance point. - The mode can be computed for both qualitative and quantitative variables.
 - The median and the mean we compute for quantitative variables.

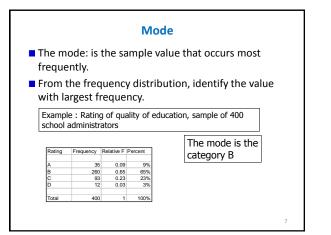
Mean


The mean for ungrouped data is obtained by dividing the sum of all values by the number of values in the data set. Thus,

Mean for population data:

Me


	-				
an	for	sam	ple	data	:



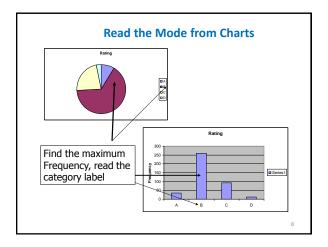
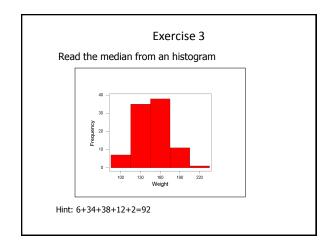
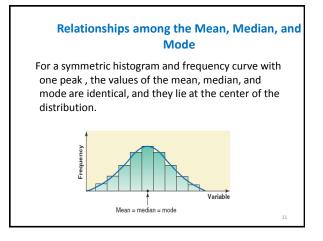
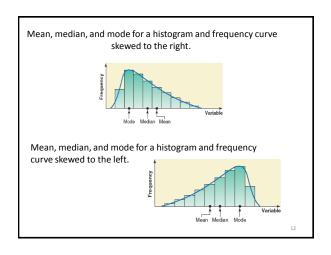

Example 1

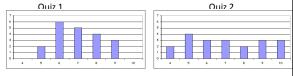
Table 1 lists the total philanthropic givings (in million dollars) by six companies . Find the mean contributions of the six companies


Corporation	Money Given in 2007 (millions of dollars)		
CVS	22.4		
Best Buy	31.8		
Staples	19.8		
Walgreen	9.0		
Lowe's	27.5		
Wal-Mart	337.9		

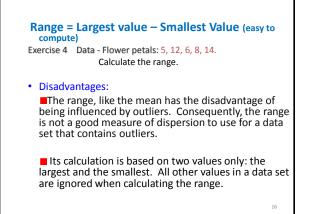




Exercise 2 a)The following data give the speeds (in miles per hour) of eight cars that were stopped on I-95 for speeding violations. 77 82 74 79 81 84 74 78 Find the mode. b)Last year's incomes of five randomly selected families were \$76,150. \$95,750, \$124,985, \$87,490, and \$53,740. Find the mode.

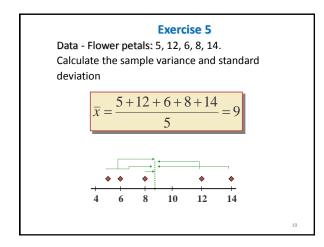

Properties

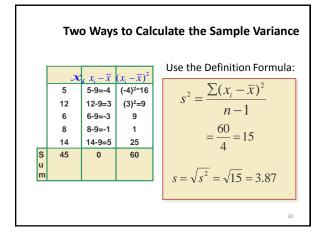
- When a distribution is symmetric, then the mode, the mean, and the median are the same.
- The mode is a meaningful measure of location when you are looking for the sample value with the largest frequency.
- The median gives an idea of the center of the distribution and, compared to the mean, it is less sensitive to unusually large or unusually small values (outliers).
- With very skewed distributions, the median is a better measure of location than the mean.

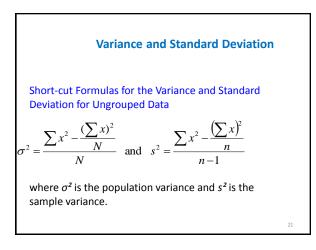

13

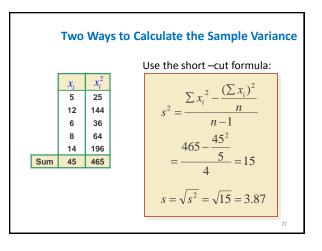
3.2 What is Variability?

- Variability refers to how "spread out" a group of scores is. These 2 graphs represent the scores on two quizzes. The mean score for each quiz is 7.0. Despite the equality of means, you can see that the distributions are quite different.
- The scores on Quiz 1 are more densely packed and those on Quiz 2 are more spread out. The differences among students was much greater on Quiz 2 than on Quiz 1.




- Variability can also be defined in terms of how close the scores in the distribution are to the middle of the distribution.
- The terms variability, spread, and dispersion are synonyms, and refer to how spread out a distribution is.
- There are four frequently used measures of variability:
 - range:
 - interquartile range
 - variance, and standard deviation.




- A deviation is the distance that a data value is from the mean.
 - Since adding all deviations together would total zero, we square each deviation and find an average of sorts for the deviations.
- The standard deviation is the most used measure of dispersion.
- The standard deviation is just the square root of the variance and is measured in the same units as the original data.
- The value of the standard deviation tells how closely the values of a data set are clustered around the mean.
- In general, a lower value of the standard deviation for a data set indicates that the values of that data set are spread over a relatively smaller range around the mean.
- In contrast, a large value of the standard deviation for a data set indicates that the values of that data set are spread over a relatively large range around the mean

<text><equation-block><text><text><equation-block><text><text>

