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Here we summarize the basic facts about regular unipotent elements of
a connected semisimple algebraic group G and regular nilpotent elements
of its Lie algebra g = Lie G. Here we work with group schemes (or the
groups of their rational points) over an algebraically closed field of arbitrary
characteristic p ≥ 0. Though most of these facts are by now well documented
and can be stated (even if not always proved) uniformly, we also call attention
to what is apparently unknown (especially in “bad” prime characteristics).

Note that groups G in the same isogeny class sometimes have different Lie
algebras when p > 0: details are summarized in papers based on Hogeweij’s
thesis [4] and in [5] for type A` when p|(` + 1). In practice this has rela-
tively litte effect in our situation because the differences are concentrated in
a Cartan subalgebra (the Lie algebra of a maximal torus in G); but there
is sometimes a difference in the resulting centralizers. We assume for con-
venience that G is simply connected ; then it is well known that g is the
Chevalley Lie algebra over K coming from a Chevalley Z-form of a corre-
sponding semisimple Lie algebra over C. In the work of both Springer and
Steinberg, analogous Z-forms lead to the Lie algebras of all G.

1 Preliminaries

Assume from now on that the root system Φ of G is irreducible (i.e., G is
simple as an algebraic group) and fix a system of simple roots. First we
recall that a good prime p is one which fails to divide any coefficient of the
highest root of G when this root is written as a Z+-linear combination of
simple roots. One sees from the classification that p = 2 is bad (not good)
for all types except A`, while p = 3 is bad just for exceptional types and
p = 5 just for type E8. (See [18, I, 4.3] or [6, 3.9]. Since the Lie algebra sln
of rank n− 1 has a nontrivial center just when p|n, we also say that p is very
good if p is good but does not divide ` + 1 in type A`. Finally, the field K is
said to be of good characteristic if its characteristic is 0 or else a good prime
p > 0. Such distinctions are crucial in most treatments of structure theory,
e.g., [3, 12, 15].

Two irreducible closed subsets in (respectively) G and g are key players:
the variety U of all unipotent elements of G and the variety N of all nilpotent



elements of g. These are both of dimension equal to dim G− `, where G has
rank `. (This is stated briefly in [1, 1.15], but the proof for bad p depends on
the existence of regular nilpotent elements in g.) In good characteristic there
is always an isomorphism between these two varieties, equivariant relative to
the natural actions of G. In characteristic 0 this is given uniformly by the
inverse maps exp and log, while for good p > 0 there is a more complicated
method originally due to Springer which also involves the normality of the
variety N . (See for example [6, Chap. 6] and [7, §2].)

Each of the two varieties is in a natural way a disjoint union of finitely
many conjugacy classes (in the case of U) or Ad G-orbits (in the case of
N ). While this follows readily from the classification of weighted Dynkin
diagrams for nilpotent orbits in characteristic 0, the proof in characteristic
p > 0 is less direct (for U and N separately).

Following work of Richardson for most p, a more comprehensive but subtle
argument by Lusztig showed the finiteness of the number of unipotent classes
in U . But case-by-case study has been needed for N when p is bad (see [1,
7.15; Chap. 5] or [6, 3.8, 3.11]. An unavoidable complication is that the
classes and orbits are not always in bijection when p is bad. However, there
are always just finitely many of them, and their dimensions are always even.
Moreover, there always turns out to be just one dense class or orbit of regular
elements.

2 Regular elements of G and of g

Here we recall briefly some basic facts about regularity. Following the work of
Kostant [9, 10] in characteristic 0 (mainly in the setting of complex semisim-
ple Lie algebras and their adjoint groups), major progress was made by Stein-
berg [19, 20] and Springer [16, 17] in the setting of semisimple algebraic
groups and their Lie algebras. For modern expositions, often incorporating
the later Bala–Carter approach to classification theory in good characteris-
tics, see for example [1, Chap. 5], [6, Chap. 4], [18, III].

It is easy to see that the centralizer of any element of G has dimension
at least ` (see for example [6, 1.6]). By definition, an element x ∈ G is
regular if its centralizer CG(x) has this least possible dimension `. Similarly,
an element z ∈ g is called regular if its “centralizer” (isotropy group under
Ad G) CG(z) in G has the least possible dimension `. This is the definition
given by Springer [16, 5.7] and used by Keny [8]. But in some sources CG(z)



is replaced by the Lie algebra centralizer cg(z). In fact the two definitions
are the same unless g has a nontrivial center, possible only if p is not very
good; cf. [16, 5.9].

We remark that the definitions extend readily to reductive groups such
as G = GLn(K) and its Lie algebra Mn(K). In this concrete case, the
notion of regularity for a square matrix is familiar in matrix theory under
the old-fashioned name non-derogatory, which translates into the condition
that the characteristic polynomial of an n×n matrix be equal to the minimal
polynomial. (For a nilpotent matrix, this just means that the Jordan normal
form of the matrix consists of a single block.)

The intrinsic Jordan–Chevalley decomposition x = su in G (product
of commuting semisimple and unipotent parts) often allows one to reduce
questions inductively to the regular unipotent case. This uses the fact that
CG(s) is reductive since s is semisimple (and even connected if G is sim-
ply connected, by arguments of Springer and Steinberg), while in turn the
unipotent part u of x lies in the semisimple derived group of CG(s).

Remark. One elegant way to characterize regular elements in G is that
x ∈ G is regular if and only if x lies in just finitely many Borel subgroups.
For example, if x = s is regular and semisimple, it lies in exactly |W | Borel
subgroups, where W is the Weyl group. At the other extreme, if x = u is
regular and unipotent, then it lies in a unique Borel subgroup.

It is reasonable to expect a parallel characterization of regular elements
in g as those which lie in only finitely many Borel subalgebras. For this
one should define a Borel subalgebra of g to be the Lie algebra of a Borel
subgroup of G (rather than say as a maximal solvable subalgebra). In this
way one could exploit the fact that for all p ≥ 0 the Borel subalgebras are in
natural bijection with the Borel subgroups: cf. [5, §14]. One then wants to
characterize the regular nilpotent elements as those lying in a unique Borel
subalgebra (cf. [16, 5.3]).

3 Regular unipotent elements

At first the most difficult task is to show that regular unipotent elements
always exist.

Theorem A. Let G as above be a connected semisimple algebraic group over
an algebraically closed field K of arbitrary characteristic p ≥ 0. Then:



(a) Regular unipotent elements u exist in G.
(b) Such elements form a single conjugacy class in G, dense in U .
(c) For each fixed choice of basis in Φ, the product of corresponding unipo-

tent elements for arbitrarily chosen nontrivial simple root group elements is
a regular unipotent element. Having nontrivial components for all simple
roots in fact characterizes those regular unipotent elements which lie in the
unipotent radical of the Borel subgroup corresponding to the choice of simple
roots.

Kostant’s treatment of complex semisimple Lie algebras in [9] achieved
similar results relative to what he called principal nilpotent elements of g.
Here the adjoint Lie group plays the role of G. (In his 1963 paper [10] the
more general concept of regular element comes into play in the guise of a set
denoted r but without the name “regular”. Here he shows, for example, in
Prop. 14 that the centralizer of any element in r is abelian.)

A uniform algebraic group treatment in aritrary characteristic was soon
provided by Steinberg [19], while at about the same time Springer was ob-
taining case-by-case results under the assumption that p is a good prime [16].
A major difference in their approaches involved the proof of existence in (a).
For this Steinberg observed that the double coset BwB for a fixed Borel
subgroup B and a Coxeter element w of the Weyl group (product of sim-
ple reflections) must consist of regular elements including a unipotent one.
Springer’s method was more concrete, involving the Chevalley commutation
relations (modulo p) in the unipotent radical of B. This approach was later
used effectively for bad p to obtain more detail, in case-by-case computations
for G and g respectively by two students of Steinberg, Lou [14] and Keny [8]
as recalled below.

It was understood by both Springer and Steinberg that the type of unipo-
tent element described in (c) should be regular, but even in special cases it
isn’t usually straightforward to describe its centralizer explicitly (and thus
compute the dimension).

Remark. In characteristic p > 0, any unipotent element of G has order
equal to some power of p. Using the Bala–Carter method of classification,
Testerman [21, 0.4] shows how to compute in exceptional types (for good p)
the order of a distinguished unipotent and thus all orders. Recalling that the
Coxeter number h is 1 plus the height of the highest positive root, the order
of a regular unipotent element u is shown to be the least power pa ≥ h. For
example, in type E8 the regular unipotents have order p when p > 30 = h,



while the order is actually p2 for the good primes p = 7, 11, 13, 17, 19, 23, 29.
Precise details for specific primes in all exceptional cases and for all p

were worked out by Lawther [11], who gave tables of the Jordan blocks for
a class representative in low-dimensional representations. For example, his
Table 9 contains the data for type E8 (later slightly corrected to reflect prob-
lems with Mizuno’s older classification); here the class of regular unipotents
is also labelled E8 and the adjoint module of dimension 248 gives the small-
est faithful representation of G. (For respective bad primes p = 2, 3, 5 one
then sees from the Jordan blocks that the orders are given respectively by
25, 34, 53.)

4 Regular nilpotent elements

Theorem B. With G as above a connected semisimple algebraic group and
g = Lie(G), in any characteristic p ≥ 0 we have:

(a) Regular nilpotent elements e exist in g.
(b) Such elements e form a single orbit under Ad G, dense in N .
(c) For each fixed choice of simple roots, the sum of corresponding ar-

bitrarily chosen nonzero root vectors is a regular nilpotent element. Indeed,
regular nilpotent elements in the nilradical of the corresponding Borel subal-
gebra are characterized by having nonzero components for each simple root.

For good primes this is due to Springer in [16, §5]. Having proven the
facts summarized in Theorem A above for good p, he uses parallel arguments
for g. To deal with bad primes, Keny [8] proceeds case-by-case using his
approach, by a combination of general arguments for classical types and
computer methods for exceptional types.

5 Centralizers and isotropy groups

When x = s is semisimple and regular, its centralizer CG(s) is just a maxi-
mal torus and thus is connected. But when x = u is unipotent and regular,
the situation is more complicated: Z(G) (which is finite and consists of
semisimple elements) obviously lies in CG(u). For each fixed regular unipo-
tent element u ∈ G and regular nilpotent element e ∈ g, most (but not quite
all) details concerning the structure of the centralizer CG(u) and the isotropy
group CG(e) have been worked out by now.



Theorem C. Take G and g as above.
(a) Let u ∈ G be a regular unipotent element, lying in the unipotent radical

U of the unique Borel subgroup B containing it. Then CG(u) is the direct
product of Z(G) and CU(u). Moreover, CU(u) is connected precisely when p
is good. If p is bad, the component group CU(u)/CU(u)◦ is cyclic, generated
by the coset of u.

(b) Let e ∈ g be any regular nilpotent element. Then CG(e) is the direct
product of Z(G) and CU(e). Moreover, CU(e) is always connected.

(c) The group CG(u) is abelian, of dimension `.

(a) This is due to Springer [16, 4.11, 4.12], for good and bad p respectively.
When p is bad, CG(u) is always disconnected even when Z(G) is trivial; here
u fails to live in the identity component CG(u)◦, but its coset generates the
cyclic component group CU(u)/CU(u)◦.

(b) If p is good, this follows from Springer’s results for G by using his
equivariant isomorphism between U and N (cf. [18, III, 3.7]). For bad p,
Keny’s case-by-case proof of the existence of regular nilpotent elements yields
indirectly this structure of the isotropy group. The tables in Liebeck–Seitz
[13] show the equality of dimensions of CG(u) and CG(e) as well as the fact
that CU(e) is always connected (confirming Keny’s work).

(c) In the case of G, the fact that CU(u)◦ is abelian follows from Springer’s
general result [17] that the centralizer of any element of G contains an abelian
subgroup of dimension ` (the argument is also given in [6, 1.14]). But he left
the question whether CU(u) itself is abelian open for bad p.

Subsequent case-by-case work by Lou in [14] for bad p shows that the
component group is always cyclic, generated by the coset of u; thus CU(u)
is always abelian, forcing CG(u) to be abelian as well. Note however (as
Liebeck and Seitz realized while computing their tables in [13]) that Lou
erred in concluding that the component group in type F4 when p = 2 has
order 2. This component group is actually cyclic of order 4, as Lou had
shown for the exceptional types E7, E8 (when p = 2). In all other cases, the
component group is cyclic of order p.

What about CG(e) when e ∈ g is a regular nilpotent element? It is natural
to expect that it too will always be abelian, as it is for good p thanks to the
existence of Springer maps between U and N . From Keny’s work (or that of
Liebeck–Seitz) we know that CU(e) is connected.

In view of (c), one natural way to prove the abelian property would
be to show that the two connected groups CU(u)◦ and CU(e)◦ = CU(e) of



dimension ` are always conjugate, and even equal for appropriate choices of
u and e. This is true in characteristic 0 or in good characteristic p > 0, where
the unipotent and nilpotent varieties are isomorphic in a G-equivariant way;
moreover, the Lie algebra Lie CU(u) contains a regular nilpotent element of
g. However, for bad p the action of Ad u on Lie CU(e) might be nontrivial,
even though the conjugation action of u on CU(u)◦ is trivial.

Here and at some earlier points of the development, we still lack “natural”
uniform proofs (especially for results obtained only by case-by-case checking).
So there is some work to be done.
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