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After a quick review of Coxeter elements in a finite Coxeter group W
(such as a Weyl group), we focus in this short note on the question of counting
them. This mainly involves pinning down the order of the centralizer CW (c)
of a typical Coxeter element c.

Consider a finite (irreducible) Coxeter system (W,S) as in [1, Chap. 4],
[5], etc. Here W is a finite group generated by reflections, acting irreducibly
on an n-dimensional real euclidean space V , while S = {s1, s2, . . . , sn} is a
set of n generating reflections satisfying the usual Coxeter relations for W .
The set S is often viewed as the set of orthogonal reflections relative to some
simple system of “roots”, taken to be unit vectors orthogonal to suitable
reflecting hyperplanes in V . The number n is called the rank of W (often
written ` as in Bourbaki, or perhaps r). Although S is often fixed, any other
choice is W -conjugate to it and therefore geometrically indistinguishable.

Textbook treatments vary a lot in style but are similar in content for finite
Coxeter groups: see for example [1, 3, 5]. In particular, the classification of
the finite irreducible groups (by Coxeter graphs, which are trees in this case)
leads to the Weyl groups of simple Lie algebras (say over C) together with the
remaining non-crystallographic finite reflection groups: most of the dihedral
groups I2(m) (of rank 2) and two exceptional groups H3 of rank 3 and order
120, and H4 of rank 4 and order 14, 400.

By definition, a Coxeter element of W (relative to any choice of S =
{s1, . . . , sn}) is the product of reflections s1, s2, . . . , sn taken in any order.
Since all sets S are W -conjugate, it is usually enough to work with a fixed
choice; this allows one for example to define the length `(w) for each w ∈ W .
A basic fact is that all Coxeter elements lie in a single conjugacy class of W
and thus have the same order h.

This and other striking facts were discovered by Coxeter in his geomet-
ric and combinatorial explorations of finite (real) reflection groups: see for
example [4]. In particular, his discovery of the natural relations on elements
of S which define W led Bourbaki to their more general notion of “Cox-
eter group” (usually infinite, but having a Coxeter-type presentation with n
involutions as generators).

Textbook accounts are given for example in [1, V,§6], [3, 10.3–10.6], and
[5, 3.16–3.20]. The key ingredient, discovered by Coxeter, is a special plane
P in V on which a Coxeter element c acts by a rotation of order precisely h=
the order of c in W , nowadays called the Coxeter number of W . The cyclic
group 〈c〉 is in fact normal in a dihedral subgroup of W which acts naturally



on the Coxeter plane as a reflection group. (Since the case n = 1 is easily
handled directly, it is convenient to leave it aside in the following discussion.)

Proposition. Let W be a finite irreducible Coxeter group and c ∈ W be an
arbitrary Coxeter element. Then the centralizer Cw(c) is the cyclic group 〈c〉.
Corollary. The single conjugacy class consisting of all Coxeter elements of
W has order |W |/h.

We remark that h is the unique largest degree of W , while |W | is the
product of the degrees 2 = d1 < d2 ≤ d3 ≤ · · · ≤ dn−1 < dn = h. Thus
the number of Coxeter elements in W is the product of the first n − 1 de-
grees. (Here the di are the degrees in increasing order of any minimal set
of homogeneous polynomials generating the W -invariants in the ring of all
polynomial functions on V .)

To conclude this note we comment briefly on the proofs in the literature
of the above proposition. Although it does not seem to be stated explicitly
in the papers of Coxeter or in the textbooks cited earlier, the most direct
proof is based mainly on taking a closer look at the action of c on the Coxeter
plane P ⊂ V .

A straightforward argument is given by Carter [2, Prop. 30] (on p. 35).
While his paper primarily deals with classes and centralizers in a finite
Weyl group (including a lot of case-by-case work), the general theory applies
equally well to any finite Coxeter group. [But his early discussion of “length”
in W deals in fact just with what is usually called “reflection length”.]

The idea of the proof is roughly as follows. It is convenient for Coxeter’s
construction of a plane P ⊂ V to assume that our Coxeter element c is
the product of two involutions y, z (always assuming n > 1 without loss of
generality). Such a choice of c is possible since the Coxeter graph of W is
a tree (an easy first step in the classification). All Coxeter elements being
conjugate, this choice is harmless.

The eigenspace for c in V relative to the (nonreal!) eigenvalue ζ :=
e(2πi)/h has dimension 1, following the work of Coxeter explained in the cited
books. Moreover, an eigenvector for ζ is not orthogonal to any root. The
construction of P shows that the reflecting hyperplanes of y and z intersect
P in two lines, while c itself acts as a rotation of order h. In particular,
ζ and its complex conjugate both occur as eigenvalues of c on P , so the
complexification of P is spanned by their eigenvectors. Studying the Weyl
chambers of P relative to the dihedral group generated by y and z, one
sees that any w ∈ W commuting with c must lie in this dihedral group and



therefore must agree with some power of c. [For background on P , Carter
cites [7] but not the papers of Coxeter. In his own paper, Steinberg refines
Coxeter’s earlier work in various directions.]

In a slightly later paper [6] Springer investigates “regular” elements in
a finite (real or complex) reflection group: for example, Coxeter elements
in a real reflection group W . He studies the eigenspaces and centralizers of
regular elements, obtaining in [6, Cor. 4.4] a proof of the above proposition in
this more general setting along with many other details, e.g., that all regular
elements are conjugate. (He refers to Carter’s paper for the more direct proof
sketched above.)

A final remark: If one considers only those Coxeter elements resulting
from a fixed choice of S, it is a more standard combinatorial problem to
work out the cardinality of the resulting set. This number seems to depend
only on the rank.
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