Revisiting Brauer’s formula
for tensor product decompositions

January 28, 2014

A classical problem in Lie theory is to decompose a tensor product of
finite dimensional simple modules into a direct sum of simple modules (pos-
sible in principle from Weyl’s complete reducibility theorem), in an explicit
way:

() L(\) ® L(p) = P X, Lv).
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The notation used here will be explained below. A familiar (though over-
simplified) example is given for the Lie algebra sl3(C) by the Clebsch—
Gordan formula; as in [2, Exer. 22.7]. In 1937 Richard Brauer published
a short note giving a general formula of this sort. It still serves as the start-
ing point for some computer methods, even though it usually involves a large
number of cancellations.

Here our purpose is to revisit Brauer’s formula and related matters from
the perspective of the BGG (Bernstein-Gelfand-Gelfand) category O at-
tached to a semisimple Lie algebra g over an algebraically closed field (or
other splitting field) of characteristic 0. These ideas from the early 1970s pro-
vide new insights into the finite dimensional Cartan—Weyl theory by working
also with certain infinite dimensional modules (see [3] for a recent account).
Our approach was suggested by J.C. Jantzen. He, along with Allen Knutson
and Shrawan Kumar, also provided valuable comments on an early version
of this note.

It is difficult to say what might constitute the “simplest” or most trans-
parent proof of Brauer’s formula, since by now the tensor product decompo-
sition has been studied using many tools ranging from Lie algebra theory to
algebraic geometry and combinatorics. Only a few references are included
below. Apparently Brauer’s formula depends essentially on the Weyl char-
acter formula, but first we discuss some more elementary steps leading to
qualitative estimates about the possible summands in the decomposition

().

1 Notation and background

Over the past century the notational conventions in Lie theory have varied
widely. Here we rely mainly on the notation used in [3], which draws on
many sources. The structure of the Lie algebra g depends mainly on its root
system ® and Weyl group W relative to a fixed Cartan subalgebra . Given
a simple system A in ®, positive and negative roots o € ® are defined, as
well as a length function ¢(w) on W.



There are |W| Weyl chambers in a real vector space spanned by ®.
Denote by A the lattice of integral weights in this vector space. Relative
to A, the dominant integral weights A lie in the dominant Weyl chamber,
whose closure is a fundamental domain for the natural action of W.

In category O the simple modules with integral weights (the only ones
we consider) are parametrized by highest weights A € A. Typically these
are infinite dimensional. For each A € A there is a universal highest weight
module (Verma module) M(A) € O and a canonical surjection M(\) —
L(X). The finite dimensional simple g-modules are those L(\) for which
A € AT. In this case W permutes the weights of L()\), preserving the
multiplicity my(u) = dim L(\), in each orbit. Denote by II(L())) the set
of all weights p for which my(u) > 0.

Each module M € O with integral weights has a formal character given
by ch M =3 p dim My e(p), a formal sum recording weight multiplicities.

All modules in O have finite length. Highest weights of composition
factors L(u) of M(A) are linked to A by the dot-action of W, given by
p=w-\:=w(A+p)—p. Here p is the sum of fundamental dominant weights
(relative to A), equal to the half-sum of positive roots. After shifting the
origin for the W-action to —p, each p € A is linked by the dot-action to an
element of AT — p for a unique w € W.

2 Possible summands and multiplicities

Using just basic facts about the BGG category O for g, we can get some
qualitative estimates on the decomposition (x). (This was worked out first
by Kostant [7], as noted by Kumar [9, (3.2)].)

(A) Fix A€ A, p € AT, In a direct sum decomposition of L(\) ® L(u) into
simple modules L(v) (with v € AT), the only possible v which can occur
have the form A 4+ 7 for some 7 € II(L(n)). Moreover, L(r) occurs in such
a direct sum at most m,(7) times.

Using the exactness of tensoring with a fixed finite dimensional module
in O, we obtain from the canonical map M(A) — L(X\) a surjection ¢ :
M(N)®L(p) — L(A)®L(p). On the left side there exists a standard filtration
having as subquotients the Verma modules M (A+7) with multiplicity m,, ()
as m runs over II(L(p)). This elementary result of BGG is developed in two
ways in [3, 3.6].

The composition factors of M (\)® L(u) are therefore those of the Verma
modules M (A + 7) taken with the indicated multiplicities. Passing to the



quotient L(A) ® L(p) retains only some finite dimensional composition fac-
tors. We claim these can occur only as top composition factors L(\ + 7).
For this it is most transparent to apply the results of Verma and BGG |3,
5.1]: unless the highest weight of a Verma module is dominant, no compo-
sition factor can be finite dimensional. This is clear from ”strong linkage”,
because the dominant Weyl chamber lies on the positive side of all reflecting
hyperplanes. Moreover, in case the highest weight X\ + 7 belongs to A™.
no strongly linked lower weight can be dominant. (But some finite dimen-
sional composition factors might remain in the kernel of the map ¢, due to
unknown extensions among the Verma modules in a standard filtration.)

Combined with the above description of multiplicities in a standard fil-
tration of M (\)®L(u), both assertions of (A) follow—but not yet an explicit
formula.

3 Brauer’s formula

While (A) limits the possible simple summands of L(A) ® L(x) and bounds
their multiplicities, an explicit formula requires a more sophisticated ap-
proach. This was first realized by Brauer [1] in 1937, though his short note
has some rough spots. (Weyl gives an account in [13, VIL.10]; see his note
22. A quick proof of the formula was obtained by Jantzen [4, p. 447] as a
consequence of his Lemma 8.) A method like Brauer’s was later developed
by A.U. Klimyk, adapted to the computational needs of physicists.

Brauer’s basic idea is fairly simple (and is easily pictured in rank 1 or
2 cases): start with the full weight diagram of L(u), which is W-symmetric
around 0, then translate this diagram in the dominant direction by adding A
to all weights 7. In case the resulting weights all lie in AT, Brauer’s formula
shows that these are precisely the highest weights (taken with multiplicity
my(m)) of the various simple modules L(v) occurring in the decomposition
of the given tensor product. (As Kostant notes in [7], this is just the case
when p is totally subordinate to A in Dynkin’s terminology.) At the other
extreme, one might consider (perhaps perversely) the case when A = 0.

In general some of the weights v = A + 7 will fail to be dominant. To
deal with these we add a bit of notation. For any v € A, there is a unique
w € W taking v to a weight v/ € AT by the dot-action: v/ = w-v. If v/ ¢ AT
(meaning it has a coordinate equal to —1), set x(v) := 0. Otherwise define
x(v) == (=1)"®) ch(v'), where ch(1/) is the formal character of the simple
module L(v'). With this notation, we can state Brauer’s formula:



B) h(ZMOLW)= 3. mum)x(A+m).
mEII(L(p))

For the proof, we again work in category O. There the module L(\)
has a BGG resolution (3, 6.1], by the modules @ (,,)—; M (w - A), which in
effect realizes the Kostant form of Weyl’s character formula (as discovered
by BGG). Since tensoring in O with a finite dimensional module is an ex-
act functor, this resolution yields a corresponding resolution of the module
L(A\) ® L(p) by direct sums of modules M(w - \) ® L(u). This allows us
to express ch (L(A) ® L(p)) as an alternating sum of formal characters of
all the Verma modules occurring in standard filtrations of the latter tensor
products in O:

(#x) ch (L(X\) @ L(p)) = Z (—1)%®) Z my(m) ch M(w - X+ 7).

weW well(L(p))

Some bookkeeping is needed in order to organize the double sum on the
right side in accordance with Brauer’s formula. For this, observe first that
by definition w - A + 7 = w - (A + 7’), where 7’ = w7 is again a weight of
L(p) with the same multiplicity. Using this for each fixed w, we can replace
M(w-A+m) by M(w- (X+ 7)) on the right side of (xx):

(¢+x%) ch (L)L) = > (-1 ™ > my(r) ch M(w-(A+7)).

weW mell(L(p))

Now fix an arbitrary weight 7 of L(u) and set v := A+m. We dispose first
of the case when v is “dot-irregular”, thus fixed by some reflection s, € W.
Write the sum over W in (% % %) as a sum over pairs {w,ws,} of formal
characters of Verma modules. Here the formal characters coincide but the
signs cancel, leaving only 0 = x(v) as desired.

When v is “dot-regular”, there are two cases:

(1) v € AT, The formal characters (with alternating sign) of the Verma
modules M (w-v) involved in a BGG resolution of L(v) are already displayed
on the right side of (x * %), with multiplicity m, (7). This agrees with the
definition of x(v).

(2) v ¢ AT. In this case, there is a unique y € W for which y - v € A™.
Using the fact that wy runs over W as w does, we see that the right side
of (* % %) involves (—1)“®) times the formal character coming from a BGG
resolution of L(y - v) in the situation of (1). This is again consistent with
the way x(v) was defined.



4 Some other approaches to tensor products

By now a variety of approaches have been developed to deal with the clas-
sical tensor product decomposition (x) and its offshoots. We mention some
influential directions, along with a few influential papers.

In type A, the finitely many nonzero coefficients ¢, in (x) are called
Littlewood—Richardson coefficients. Special or general linear Lie algebras
and the associated groups over C have especially attracted the attention of
combinatorists. Here W is a symmetric group,while weights can be thought
of as partitions. After the initial development of the L-R rule for comput-
ing the coefficients, newer approaches have been found to this and related
problems: see for instance the work of Knutson and Tao [6].

For arbitrary semisimple Lie algebras g, the work of Littelmann on
“paths” has drawn considerable attention from combinatorists, since it ar-
rives at numerical results in tensor product computations without doing
elaborate cancellations. See especially his paper [10].

Older work by Partharasathy, Ranga Rao, and Varadarajan led to the
PRV Conjecture which predicts that certain highest weights. related to
extremal weights of one of the modules being tensored, must occur with
positive multiplicity in (x). This resisted purely algebraic methods for a
long time, but eventually the conjecture was proved in a precise form using
algebraic geometry: see the independent work of Kumar [8] (cf. [9]) and
Mathieu [11]. The geometry arises naturally from study of flag varieties and
the like attached to an algebraic group having Lie algebra g. (Earlier papers
by Kempf also explored tensor products, in terms of the realization of a
simple module as the global sections of a line bundle on the flag variety.)
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