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Consider the simple Lie algebra g of type D4 over an algebraically closed
field K of characteristic p > h = 6 (the Coxeter number). In particular, p is
a good prime. We have dim g = 28, with N = 12 positive roots, while the
Weyl group W has order 192.

Here we assemble some details about three aspects of g which are known
or conjectured to be closely related (see [7] and references there): nilpo-
tent orbits; cells in a corresponding affine Weyl group; representations (not
necessary restricted) of g over K attached to nilpotent orbits.

First we summarize concisely in a table known data in the case of D4,
followed by remarks and references to sources. Many ideas are expected to
carry over to other semisimple Lie algebras if the characteristic is good (or
sometimes greater than the Coxeter number): then the nilpotent variety of
g and unipotent variety of its adjoint group can be identified in such a way
that the essential properties of nilpotent orbits and unipotent classes agree.
Here are some abbreviations used in the table:

Oe Orbit of given e ∈ N (= nilpotent variety of g)

d Half-dimension of Oe

A(e) Component group A(e) := CG(e)/CG(e)◦ if nontrivial

Be Fiber over e in Springer’s desingularization of N , identified with the
set of Borel subalgebras containing e

a dimBe (= Lusztig’s a-invariant of cell Ωe associated to Oe)

IC Number of irreducible components of Be

R Is Oe a Richardson orbit?

S Is Oe special?

LT Is Oe of standard Levi type (e is regular in some Levi subalgebra)?

M Number of simple modules in a regular block of the reduced enveloping
algebra attached to e

LC Number of left cells in the two-sided cell Ωe



orbit Oe d A(e) a IC R S LT M LC
[7, 1] 12 0 1 Y Y Y 1 1
[5, 3] 11 1 4 Y Y N 5 5
[5, 13] 10 2 3 Y Y Y 8 8
[42]I 10 2 3 Y Y Y 8 8
[42]II 10 2 3 Y Y Y 8 8
[32, 12] 9 Z2 3 14 Y Y Y 32 22
[3, 22, 1] 8 4 2 N N Y 24 24
[3, 15] 6 6 3 Y Y Y 48 48
[24]I 6 6 3 Y Y Y 48 48
[24]II 6 6 3 Y Y Y 48 48
[22, 14] 5 7 4 N Y Y 96 96
[18] 0 12 1 Y Y Y 192 192

Table 1: Data for type D4

Sources and remarks

(1) The nilpotent variety N of g comprises 12 nilpotent orbits relative to
the adjoint group G. Labels for orbits involve partitions of 8, since the
natural module for g has dimension 8. The partial ordering of orbits
by inclusion of one orbit in the closure of another is the most obvious
ordering compatible with dimensions of orbits. Data about the orbits
is assembled in the table, along with data on representations attached
to an orbit and on the left cells of the associated 2-sided cell of the
affine Weyl group of D4 (relative to Lusztig’s bijection).

(2) The nilpotent orbits of D4 have been well-studied: see for example
[3, 5, 13]. In [3] see pp. 426–427, 449. In [5] see pp. 84, 97, 103, 118;
but note that the orbit with partition [32, 12] is mistakenly omitted on
p. 84. In two cases there is a triple of orbits with the same dimension;
these also share other data, since an outer automorphism of g of order
3 permutes them naturally.

(3) The Weyl group W of type D4 has also been well-studied, together
with its characters (in the general setting of type Dn). Here W is a
semidirect product of S4 with an elementary abelian group of order 8,
the latter being normal. Thus |W | = 192 = 26 · 3. The set Ŵ of its



characters has 13 elements, of degrees 1, 1, 2, 3, 3, 3, 3, 3, 3, 4, 4, 6, 8; the
character of degree 6 is not Springer and that of degree 2 is nonspecial
in Lusztig’s sense. The characters are realized by Springer theory: in
case the component group A(e) is trivial, the top cohomology of the
Springer fiber Be affords an irreducible character of W having degree
equal to the number IC of irreducible components of Be. (Values of
IC for type D4 are found in [22, p. 239].) When Oe has type [32, 12]
and A(e) = Z2, the dimension of the top cohomology is 14 and affords
the character of degree 8 along with the character of degree 6 tensored
with the nontrivial character of Z2.

(4) Lusztig conjectured and later proved (by using deep geometric meth-
ods) that there is a bijection between nilpotent orbits Oe of g (or rather
unipotent classes of G) and 2-sided cells Ωe in the (dual) affine Weyl
group: see [15] and the references there. In his bijection, the a-invariant
of Ωe agrees with the dimension of the Springer fiber Be for a typical
e in the corresponding orbit. The values range from a = 0 for the
regular orbit to a = N for the zero orbit. Here d = N − a is half the
dimension of the orbit, as seen in the table. Lusztig also conjectured
that his bijection respects the natural partial orderings on cells and on
orbits. This was shown by Shi in rank < 5 and in type A, then (much
less directly) by Bezrukavnikov in general.

(5) In a 1983 paper, Lusztig [14, 3.6] conjectured that the number of left
cells in the two-sided cell Ωe is given in good characteristic by∑

i≥0

(−1)i dimH i(Be,Q`)
A(e).

This has not yet been proved in general. He formulated the conjecture
for unipotent elements and arbitrary p, but it carries over to nilpotents
in good characteristic. In that case all odd degree cohomology is known
to vanish, so the sum gives the dimension of the fixed point space of
A(e) on the total cohomology of the Springer fiber Be. (The dimension
of this total cohomology is computable in most cases using Lusztig’s
induction theorem [20] for Springer representations.)

(6) Column LC in the table specifies the number of left cells in each cor-
related 2-sided cell. This is worked out in the special case D4 indepen-



dently by Chen [4] and Shi [21], based on similar combinatorial tech-
niques. Although direct computations are intricate and hard to double-
check, the results here agree with Lusztig’s conjecture just quoted.

(7) The zero orbit corresponds to restricted representations of g, coming
from representations of a simply connected group of the same type: see
[11]. For p ≥ h, Lusztig’s 1980 conjecture should provide recursively
the dimensions and formal characters of simple modules in this case.
This is not yet proved in full generality, but in any case the number of
simple modules in each regular block for g is given uniformly by |W |.

(8) For background on the non-restricted representations of g, see [6]; many
details are worked out by Jantzen [8, 9, 10, 12]. Simple modules at-
tached by Kac–Weisfeiler to nilpotent orbits are the crucial ones to
understand. As they conjectured and Premet proved (under mild re-
strictions), all g-modules for a given orbit of dimension 2d have dimen-
sions divisible by pd.

(9) A nilpotent orbit Oe has “standard Levi form” if e is regular in some
Levi subalgebra of g, say determined by a subset I of simple reflections
in W . In this case the number M of simple modules in a regular block
is always |W |/|WI |, where WI is the subgroup of W generated by I
(Friedlander–Parshall). More detailed information predicted by Lusztig
[17] is verified by Jantzen in special cases (some unpublished).

(10) For the regular orbit (here d = 12), a regular block has only one simple
module and its dimension is pd. The subregular case (d = 11) is worked
out for D4 and most other cases by Jantzen [9]. In unpublished work
on type Dn he also gives details about one orbit with d = 10 (including
the number M and explicit dimension formulas). Much less is known
about dimensions for nonzero orbits of D4 with d ≤ 9.

(11) For D4 the number M can be computed by using the algebraic re-
sults just quoted. In general the work of Bezrukavnikov, Mirković, and
Rumynin [1, 2] has shown for p > h that the number M is given by the
dimension of the total cohomology of the associated Springer fiber Be.

(12) Lusztig’s proposed formalism [15, §10] for the asymptotic Hecke algebra
associated with a 2-sided cell Ωe of the affine Weyl group is expected
to be modeled by the set of simple modules in a regular block of the



corresponding reduced enveloping algebra for a simple Lie algebra (of
dual type): see [19, 7] and forthcoming joint work of Bezrukavnikov
and Mirković. Here each A(e)-orbit in the set of M simple modules in
a regular block should be assigned uniquely to a left cell. (The numbers
here make sense in view of Lusztig’s approach [14] to counting left cells,
combined with the result of [1] just quoted and the equivariance of their
category equivalences relative to A(e). This insures that A(e) acts on
the total cohomology of Be by a permutation representation, forcing
the number of orbits in the set of simple modules to agree with the
dimension of the fixed point space.) For D4, the nilpotent orbit of
type [32, 12] has component group Z2 acting with 22 orbits in all: 12
singletons and 10 pairs, in a natural bijection with the 22 left cells.

(13) In general it is reasonable to ask when a higher power of p than pd

can divide one or more dimensions of simple modules in a regular block
attached to a nilpotent orbit of dimension 2d. The relatively few exam-
ples known so far from Jantzen’s work (in rank ≤ 3 or involving “small”
blocks) behave consistently: In each instance there is a special piece of
N , involving a special orbit Oe together with one or more smaller non-
special orbits in its closure; then A(e) 6= 1 according to Lusztig [16,
Thm. 0.4]. Two or more simple modules attached to Oe form an A(e)-
orbit, with a common dimension of the form pdm (p not dividing m).
These “degenerate” to a single module of the same dimension attached
to a nonspecial orbit; such a pattern might be repeated in passing to
a smaller nonspecial orbit, leading again to a higher than expected p-
power in some dimension there. So far it is precisely for nonspecial
orbits that examples are known where an unexpected p-power occurs;
is this a general fact?

(14) In the case D4 there is a special piece involving the special orbit [32, 12]
with d = 9 and A(e) = Z2, together with the nonspecial orbit [3, 22, 1]
with d = 8. It would be especially interesting to compute the p-powers
dividing dimensions here. From the cell data one expects to have 10
pairs of simple modules attached to [32, 12], each pair sharing a dimen-
sion p9m and retaining this dimension under degeneration to a single
module attached to the orbit [3, 22, 1]. (Recent calculations by Jantzen,
based in part on Lusztig’s conjecture in [17], confirm this expectation
while exhibiting closed formulas for many dimensions of simple mod-



ules.)

(15) In the general setting, the limited evidence available so far suggests a
strong correlation between nonspecialness of nilpotent orbits and oc-
currence of higher than expected p-powers in dimensions. This raises
natural questions about two cases in which nilpotent orbits are always
special: type A` and the zero nilpotent orbit. For example, are there
any simple restricted modules in regular blocks which have dimensions
divisible by p?

It is a consequence of Lusztig’s conjecture on characters in the restricted
case that (for p large enough) the dimensions of simple modules are Z-
linear combinations of Weyl dimensions with coefficients independent
of p. For p-regular weights the Weyl dimensions in question are not
divisible by p and are all congruent up to sign modulo p, using Weyl’s
formula and linkage under the affine Weyl group. From this and the
format of Lusztig’s conjecture it would follow that most p do not divide
the dimensions of simple modules in a regular block. (The question
can also be asked about quantum groups for the relevant weights and
primes. Here the analogue of Lusztig’s conjecture is known to be true.)
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