Hongkun Zhang, LGRT 1340, 413.545.2871, hongkun at math dot umass dot edu. The best way to contact me is by email.
This page will be updated periodically if rooms change. Definitive information can be found via SPIRE or from the department's course webpage. Please report any mistakes to me by email.
Math 233.1 (Anna Kazanova) MWF 10:10  11:00 am, LGRT 123
Math 233.2 (Giancarlo Urzua) MWF 11:15  12:05 pm, LGRT 123
Math 233.3 (Jinguo Lian) MWF 12:20  1:10 pm, GSMN 51
Math 233.4 (Garrett Cahill) MWF 1:25  2:15 pm, LGRT 202
Math 233.5 (Garrett Cahill) MWF 2:30  3:20 pm, LGRT 202
Math 233.6 (Hongkun Zhang) TuTh 9:30  10:45 am, LGRT 123
Math 233.7 (Tom Weston) TuTh 11:15  12:30 pm, HAS 138
Math 233.8 (Tom Weston) TuTh 1:00  2:15 pm, LGRT 123
Math 233.9 (Julie Rana) TuTh 2:30  3:45 pm, LGRT 123
Math 233.10 (Yao Wang) TuTh 1:00  2:15 pm, LGRT 202
Math 233.11 (Yao Wang) TuTh 2:30  3:45 pm, LGRT 202
Math 233.12 (Jennifer Koonz) TThu 11:15 am12:30 am LGRT 123
Description
This course is part of a 3semester sequence (131132233), covering standard material on differential and integral calculus at an intermediate level: more sophisticated (and much faster moving) than high school calculus, but with less emphasis on theoretical rigor than in advanced courses such as Math 523. Instead the emphasis is on basic concepts, methods, and applications suitable for students majoring in engineering, natural sciences, computer science, and mathematics. Math 233 covers calculus of functions of more than one variable.
Due dates for homework assignments will be announced by your instructor and listed in WebAssign. Logging in to WebAssign at WebAssign.com On the login page, give your...
Username: your UMass Student ID number
Institution: umass
Password: umass (change it as soon as possible, and make it something you'll remember but others won't be able to figure out!)
One week after the semester's start, you will need to enter your WebAssign access code when you log in. You get this access code when you buy the textbook + WebAssign package. You may also buy an access code from the WebAssign site, but that's more expensive.
There is no required calculator for the course, although many students find them helpful. You will be allowed to use a calculator on exams, but you must show all work other than arithmetic calculations.
http://www.math.umass.edu/~hongkun/teach23310.html
The following is meant to give a general idea of which sections are covered in which weeks. Coverage may be different depending on such factors as MWF vs. TuTh schedule, different paces of individual instructors, etc. However, it is expected that all these sections will be covered.


Grading
The grading of the course will be as follows. There will be a final exam worth 40% and two exams during the semester worth 20% each. The final 20% of each student's grade will be determined by his or her section instructor ("Instructors 20%").
All scores will be scaled to a 0100 scale before averaging.
The final will be cumulative, with some emphasis placed on topics covered after the second exam. You will be allowed to bring in one (singleside only) page of notes.
The date and time of the final exam will be scheduled by the university. The final will only be given at that time, and not at any other time for any reason. In particular, adjust your travel plans accordingly; planning to leave for vacation before the final exam is a bad idea.
The dates of the exams during the semester are tentatively scheduled to be the following:
Exam 1 (pdf file) and solutions (pdf file)
These dates and times are compliant with the academic regulations issued by the Registrar.
Please be aware of these dates and write them down in your datebook. Exams will not be given at any other time. Sections covered on an exam will be announced before the exam date. Makeup exams will only be given for reasons described here. You can print and bring the formula sheet, and no other cheat sheets are allowed. There will be no cheat sheets (or formula sheet) allowed in Test 2.
Each instructor will determine 20% of a student's course grade, based on the student's performance in such areas as homework, quizzes, projects, attendance, etc. How this portion of the grade is computed is solely up to the discretion of your instructor. In particular, different instructors may compute this portion differently.
This is a list of suggested problems from the sections in Stewart we will cover. Your instructor may or may not choose to use these problems for graded assignments. These problems are provided as an additional resource to help to prepare for exams.
Section 
Topic 
Recommended Homework 
12.1 
Threedimensional coordinate systems 
3, 7, 11, 13, 17, 23, 31 
12.2 
Vectors 
3, 11, 15, 19, 24, 31, 37 
12.3 
The dot product 
5, 7, 9, 17, 19, 23, 27, 37, 39, 43, 51, 52 
12.4 
The cross product 
1, 3, 11, 15, 29, 33, 39, 45 
12.5 
Equations of lines and planes 
2, 3, 4, 5, 7, 11, 12, 13, 19, 25, 27, 31, 35, 39, 45, 55, 69, 71 
12.6 
Cylinders and quadric surfaces 
3, 5, 11, 2128, 41, 43 
10.1 
Curves defined by parametric equations 
1, 7, 21 
13.1 
Vector functions and space curves 
7, 11, 15, 1924, 35 
13.2 
Derivatives and integrals of vector functions 
3, 5, 9, 11, 19, 25, 33, 37, 49 
13.3 
Arc length (omit curvature) 
1 
13.4 
Motion in space: velocity and acceleration 
3, 5, 9, 11, 15, 19, 23 
14.1 
Functions of several variables 
11, 23, 25, 29, 37, 39, 55, 56 
14.2 
Limits and continuity 
7, 9, 27, 33 
14.3 
Partial derivatives 
3, 5, 15, 17, 19, 21, 35, 37, 41, 47, 49, 81 
14.4 
Tangent planes and linear approximations 
1, 3, 5, 17, 19, 25, 29 
14.5 
The chain rule 
1, 5, 11, 13, 15, 17, 21, 27, 39 
14.6 
Directional derivatives and the gradient vector 
1, 5, 7, 11, 13, 21, 23, 39, 53, 59 
14.7 
Maximum and minimum values 
5, 7, 11, 29, 31 
14.8 
Lagrange multipliers 
3, 5, 7, 19 
15.1 
Double integrals over rectangles 
1, 5, 11 
15.2 
Iterated integrals 
3, 5, 7, 11, 13, 15, 21, 23, 27, 35 
15.3 
Double integrals over general regions 
1, 3, 5, 7, 13, 19, 21, 23, 39, 43, 45 
10.3 
Polar coordinates (omit tangents) 
1, 3, 5, 7, 9, 15, 29, 31, 39 
15.4 
Double integrals in polar coordinates 
7, 11, 19, 21, 29, 31 
15.5 
Applications of double integrals 
3, 5 
16.1 
Vector fields 
1, 3, 5, 1118, 21, 25 
16.2 
Line integrals 
1, 3, 7, 11, 17, 19, 23 
16.3 
The fundamental theorem for line integrals 
3, 5, 7, 11, 13, 21, 23 
16.4 
Green's theorem 
1, 3, 9, 11, 13, 19 
Your instructor may require you to complete these problems for the Instructor's 20%. In any case, it is important that you study these problems for several reasons:
Practice Exams:
Sample Exams from previous years
The best way to get help is to visit your instructor's office hours. If you can't make those, try visiting the Calculus Tutoring Center, which has dropin hours for help with Math 131, 132, and 233. Another option is to visit the Learning Resource Center, which usually has at least a few tutors who can help with 233.