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Midterm 2 covers material that begins approximately with the definition of partial
derivatives in Chapter 14.3 and ends approximately with methods for calculating the
double integral of a function f(x, y) over a domain D described in the xy-plane. See the
updated course web page for the exact material covered on this exam.

This material begins with the definition of partial derivatives in Chapter 14.3 and
ends with methods for calculating the double integral of a function f(x, y) over a domain
D described in the xy-plane. See sections 14.1 and 14.2 for material on continuity of
functions.

Definition 1 (Partial Derivatives) If f is a function of two variables, its partial deriva-
tives are the functions fx and fy defined by

fx(x, y) = lim
h→0

f(x + h, y)− f(x, y)
h

fy(x, y) = lim
h→0

f(x, y + h)− f(x, y)
h

.

We have the following rule for calculating partial derivatives.

1. To find fx, regard y as a constant and differentiate f(x, y) with respect to x.

2. To find fy, regard x as a constant and differentiate f(x, y) with respect to y.

Example 2 Calculate fx, fy for f(x, y) = x2exy + y2.

Solution :
fx(x, y) = 2xexy + x2exyy = 2xexy + x2yexy

fy(x, y) = x2exyx + 2y = x3exy + 2y.

Definition 3 (Second Partial Derivatives) For z = f(x, y), we use the following no-
tation:

(fx)x = fxx =
∂

∂x

(
∂f

∂x

)
=

∂2f

∂x2
=

∂2z

∂x2

(fx)y = fxy =
∂

∂y

(
∂f

∂x

)
=

∂2f

∂y∂x
=

∂2z

∂y∂x

(fy)x = fyx =
∂

∂x

(
∂f

∂y

)
=

∂2f

∂x∂y
=

∂2z

∂x∂y

(fy)y = fyy =
∂

∂y

(
∂f

∂y

)
=

∂2f

∂y2
=

∂2z

∂y2

Example 4 Find the second partial derivatives of

f(x, y) = x3 + x2y3 − 2y2.
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Solution : Note:

fx(x, y) = 3x2 + 2xy3 fy(x, y) = 3x2y2 − 4y.

Therefore,
fxx = 6x + 2y3 fxy = 6xy2

fyx = 6xy2 fyy = 6x2y − 4.

Note that in the above example fxy = fyx. This is no coincidence and fact follows
from the next theorem that states that under weak conditions on f(x, y), taking partial
derivatives is a commutative process.

Theorem 5 (Clairaut’s Theorem) Suppose f is defined on a disk D that contains the
point (a, b). If the functions fxy and fyx are both continuous on D, then

fxy(a, b) = fyx(a, b).

The next definition of tangent plane generalizes in a natural way the following equation
of the tangent line of a function of 1 variable:

y − y0 = f ′(x0)(x− x0).

Definition 6 (Tangent Plane) Suppose f has continuous partial derivatives. An equa-
tion of the tangent plane to the surface z = f(x, y) at the point P = (x0, y0, z0) is

z − z0 = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).

Example 7 Find the tangent plane to the elliptic paraboloid z = 2x2 + y2 at the point
(1, 1, 3).

Solution : Let f(x, y) = 2x2 + y2. Then

fx(x, y) = 4x fy(x, y) = 2y

fx(1, 1) = 4 fy(1, 1) = 2.

Then Definition 6 gives the equation of the tangent plane at (1, 1, 3) as

z − 3 = 4(x− 1) + 2(y − 1)

or
z = 4x + 2y − 3.

The next definition of linear approximation generalizes the linear approximation L(x)
of a function f(x) of 1 variable at a point x0 = a :

L(x) = f(x) + f ′(x)(x− a).

Definition 8 (Linear Approximation) The linear approximation of f(x, y) at (a, b) is

L(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b).
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Example 9 Use the linear approximation L(x, y) to f(x, y) = xexy at (1, 2) to estimate
f(1.1, 1.8).

Solution :
fx(x, y) = exy + xyexy fy(x, y) = x2exy

fx(1, 2) = e2 + 2e2 fy(1, 2) = e2.

L(x, y) = f(1, 2) + fx(1, 2)(x− 1) + fy(1, 2)(y − 2).

Hence,
L(1.1, 1.8) = e2 + (e2 + 2e2)(.1) + e2(−.2).

Definition 10 If z = f(x, y), then f is differentiable at (a, b) if the change ∆z of z can
be expressed in the form

∆z = fx(a, b)∆x + fy(a, b)∆y + ε1∆x + ε2∆y,

where ε1 and ε2 → 0 as (∆x,∆y) → (0, 0).

The next theorem gives a simple condition for f(x, y) to satisfy in order to be differ-
entiable.

Theorem 11 If the partial derivatives fx and fy exist near (a, b) and are continuous at
(a, b), then f is differentiable at (a, b).

Definition 12 (Total Differential) For z = f(x, y),

dz = fx(x, y) dx + fy(x, y) dy =
∂z

∂x
dx +

∂z

∂y
dy.

Example 13 The base radius and height of a right circular cone are measured as 10 cm
and 25 cm, respectively, with a possible error in measurement of as much as 0.1 cm. in
each. Use differentials to estimate the maximum error in the calculated volume of the
cone.

Solution : The volume V of a cone with base radius r and height h is V = πr2 h
3 . So the

differential of V is

dV =
∂V

∂r
dr +

∂V

∂h
dh =

2πrh

3
dr +

πr2

3
dh.

Since each error is at most 0.1 cm, we have |∆r| ≤ 0.1, |∆h| ≤ 0.1. To find the largest
error in the volume we take the largest error in the measurement of r and of h. Therefore,
we take dr = 0.1 and dh = 0.1 along with r = 10, h = 25. This gives the estimate

dV =
500π

3
(0.1) +

100π

3
(0.1) = 20π.

Thus, the maximum error in the calculated volume is about 20π cm3 ≈ 63 cm3.
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Example 14 The dimensions of a rectangular box are measured to be 75 cm, 60 cm, and
40 cm, and each measurement is correct to within 0.2 cm. Use differentials to estimate the
largest possible error when the volume of the box is calculated from these measurements.
Solution : If the dimensions of the box are x, y, and z, its volume is V = xyz and so

dV =
∂V

∂x
dx +

∂V

∂y
dy +

∂V

∂z
dz = yz dx + xz dy + xy dz.

We are given that |∆x| ≤ 0.2, |∆y| ≤ 0.2, and |∆z| ≤ 0.2. To find the largest error in
the volume, we use dx = 0.2, dy = 0.2, and dz = 0.2 together with x = 75, y = 60, and
z = 40:

∆V ≈ dV = (60)(40)(0.2) + (75)(40)(0.2) + (75)(60)(0.2) = 1980.

Thus, an error of only 0.2 cm in measuring each dimension could lead to an error of
as much as 1980 cm3 in the calculated volume! This may seem like a large error, but it’s
only about 1% of the volume of the box.

Theorem 15 (Chain Rule Case 1) Suppose that z = f(x, y) is a differentiable func-
tion of x and y, where x = g(t) and y = h(t) are both differentiable functions of t. Then
z is a differentiable function of t and

dz

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
.

Theorem 16 (Chain Rule Case 2) Suppose that z = f(x, y) is a differentiable func-
tion of x and y, where x = g(s, t) and y = h(s, t) are both differentiable functions of s and
t. Then z is a differentiable function of t and

∂z

∂s
=

∂z

∂x

∂x

∂s
+

∂z

∂y

∂y

∂s

∂z

∂t
=

∂z

∂x

∂x

∂t
+

∂z

∂y

∂y

∂t
.

Theorem 17 (The Chain Rule (General Version)) Suppose that u is a differentiable
function of n variables x1, x2, . . . , xn and each xj is a differentiable function of the m vari-
ables t1, t2, . . . , tm. Then u is a function of t1, t2, . . . , tm and

∂u

∂ti
=

∂u

∂x1

∂x1

∂ti
+

∂u

∂x2

∂x2

∂ti
+ . . . +

∂u

∂xn

∂xn

∂ti

for each i = 1, 2, . . . ,m.

Example 18 If z = x2y + 3xy4, where x = sin 2t and y = cos t, find dz
dt when t = 0.

Solution : The Chain Rule gives

dz

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
= (2xy + 3y4)(2 cos 2t) + (x2 + 12xy3)(− sin t).

It’s not necessary to substitute the expressions for x and y in terms of t. We simply
observe that when t = 0 we have x = sin 0 = 0 and y = cos 0 = 1. Therefore,

dz

dt t=0
= (0 + 3)(2 cos 0) + (0 + 0)(− sin 0) = 6.
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Example 19 The pressure P (in kilopascals), volume V (in liters), and temperature T
(in kelvins) of a mole of an ideal gas are related by the equation PV = 8.31T . Find the
rate at which the pressure is changing when the temperature is 300 K and increasing at a
rate of 0.1 K/s and the volume is 100 L and increasing at a rate of 0.2 L/s.

Solution : If t represents the time elapsed in seconds, then at the given instant we have
T = 300, dT/dt = 0.1, V = 100, dV/dt = 0.2. Since

P = 8.31
T

V
,

Case 1 of the Chain Rule gives

dP

dt
=

∂P

∂T

dT

dt
+

∂P

∂V

dV

dt
=

8.31
V

dT

dt
+

8.31T

V 2

dV

dt

=
8.31
100

(0.1) +
8.31(300)

1002
(0.2) = −0.04155.

The pressure is decreasing at a rate of about 0.042 kPa/s.

Example 20 If z = e3 sin y, where x = st2 and y = s2t, find ∂z
∂s and ∂z

∂t .

Solution : Applying Case 2 of the Chain Rule, we get

dz

ds
=

∂z

∂x

∂x

∂s
+

∂z

∂y

∂y

∂s
= (ex sin y)(t2) + (ex cos y)(2st)

= t2est2 sin(s2t) + 2stest2 cos(s2t),

dz

dt
=

∂z

∂x

∂x

∂t
+

∂z

∂y

∂y

∂t
= (ex sin y)(2st) + (ex cos y)(s2)

= 2srest2 sin(s2t) + s2est2 cos(s2t).

Example 21 If u = x4 + y2z3, where x = rset, y = rs2e−t, and z = r2s sin t, find the
value of ∂u/∂s when r = 2, s = 1, t = 0.

Solution : We have
∂u

∂s
=

∂u

∂x

∂x

∂s
+

∂u

∂y

∂y

∂s
+

∂u

∂z

∂z

∂s

= (4x3y)(ret) + (x4 + 2zy3)(2rse−t) + (3y2z2)(r2 sin t).

When r = 2, s = 1, and t = 0, we have x = 2, y = 2, and z = 0, so

∂u

∂s
= (64)(2) + (16)(4) + (0)(0) = 192.

Theorem 22 (Implicit Differentiation) Suppose that z is given implicitly as a func-
tion z = f(x, y) by an equation F (x, y, z) = 0, i.e., F (x, y, f(x, y)) = 0 for all (x, y) in the
domain of f(x, y). Then:

∂z

∂x
= −

∂F
∂x
∂F
∂z

∂z

∂y
= −

∂F
∂y

∂F
∂z

.
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Example 23 Find ∂z
∂x and ∂z

∂y if x3 + y3 + z3 + 6xyz = 1.

Solution : Let F (x, y, z) = x3 + y3 + z3 + 6xyz − 1. Then, from Theorem 22, we have

∂z

∂x
= −Fx

Fz
= −3x2 + 6yz

3z2 + 6xy
= −x2 + 2yz

z2 + 2xy

∂z

∂y
= −Fy

Fz
= −3y2 + 6xz

3z2 + 6xy
= −y2 + 2xz

z2 + 2xy
.

Definition 24 (Directional Derivative) The directional derivative of f at (x0, y0)
in the direction of a unit vector u = 〈a, b〉 is

Duf(x0, y0) = lim
h→0

f(x0 + ha, y0 + hb)− f(x0, y0)
h

if this limit exists.

Definition 25 (Directional Derivative) The directional derivative of f at (x0, y0, z0)
in the direction of a unit vector u = 〈a, b, c〉 is

Duf(x0, y0, z0) = lim
h→0

f(x0 + ha, y0 + hb, z0 + hc)− f(x0, y0, z0)
h

if this limit exists.

Definition 26 (Gradient) If f is a function of two variables x and y, then the gradient
of f is the vector function ∇f defined by

∇f(x, y) = 〈fx(x, y), fy(x, y)〉 =
∂f

∂x
i +

∂f

∂y
j.

Definition 27 (Gradient) For f(x, y, z), a function of three variables,

∇f = 〈fx, fy, fz〉 =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k.

The next two theorems give a simple rule for calculating the directional derivative of
a function in 2 or 3 variables in terms of the gradient of the function.

Theorem 28 If f is a differentiable function of x and y, then f has a directional derivative
in the direction of any unit vector u = 〈a, b〉 and

Duf(x, y) = fx(x, y)a + fy(x, y)b.

Theorem 29 If f is a differentiable function of x, y, and z, then f has a directional
derivative in the direction of any unit vector u = 〈a, b, c〉 and

Duf(x, y, z) = ∇f(x, y, z) · u.

By the above two theorems, we have for any unit vector u,

Duf = ∇f · u = |∇f ||u| cos(θ) = |∇f | cos(θ).

Thus, the next theorem holds.
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Theorem 30 Suppose f is a differentiable function of two or three variables. The maxi-
mum value of the directional derivative Duf(x) is |∇f(x)| and it occurs when u has the
same direction as the gradient vector ∇f(x).

Example 31 Find the directional derivative of the function f(x, y) = x2y3 − 4y at the
point (2,−1) in the direction of the vector v = 2i + 5j.

Solution : We first compute the gradient vector at (2,−1):

∇f(x, y) = 2xy3i + (3x2y2 − 4)j

∇f(2,−1) = −4i + 8j.

Note that v is not a unit vector, but since |v| =
√

29, the unit vector in the direction of
v is

u =
v
|v|

=
2√
29

i +
5√
29

j.

Therefore, by Theorem 28, we have

Duf(2,−1) = ∇f(2,−1) · u = (−4i + 8j) · ( 2√
29

i +
5√
29

j)

=
−4 · 2 + 8 · 5√

29
=

32√
29

.

Theorem 32 Suppose S is a surface determined as F (x, y, z) = k = constant. Then ∇F
is everywhere normal or orthogonal to S. In particular, if P = (x0, y0, z0) ∈ S, then the
equation of the tangent plane to S at p is:

Fx(x0, y0, z0)(x− x0) + Fy(x0, y0, z0)(y − y0) + Fz(x0, y0, z0)(z − z0) = 0 (1)

Example 33 Find the equations of the tangent plane and normal line at the point
(−2, 1,−3) to the ellipsoid

x2

4
+ y2 +

z2

9
= 3.

Solution : The ellipsoid is the level surface (with k = 3) of the function

F (x, y, z) =
x2

4
+ y2 +

z2

9
.

Therefore we have

Fx(x, y, z) =
x

2
Fy(x, y, z) = 2y Fz(x, y, z) =

2z

9

Fx(−2, 1,−3) = −1 Fy(−2, 1,−3) = 2 Fz(−2, 1,−3) = −2
3
.

Then Equation 1 in Theorem 32 gives the equation of the tangent plane at (−2, 2,−3)
as

−1(x + 2) + 2(y − 1)− 2
3
(z + 3) = 0,

which simplifies to 3x− 6y + 2z = 18 = 0. Since ∇F (−2, 1,−3) = 〈−1, 2,−2
3〉, the vector

equation of the normal line is:

L(t) = 〈−2, 1,−3〉+ t〈−1, 2,−2
3
〉.
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Definition 34 A function of two variables has a local maximum at (a, b) if f(x, y) ≤
f(a, b) when (x, y) is near (a, b). (This means that f(x, y) ≤ f(a, b) for all points (x, y) in
some disk with center (a, b).) The number f(a, b) is called a local maximum value. If
f(x, y) ≤ f(a, b) for all f(x, y) in the domain of f , then f has an absolute maximum
at (a, b). If f(x, y) ≥ f(a, b) when (x, y) is near (a, b), then f(a, b) is a local minimum
value. If f(x, y) ≥ f(a, b) for all (x, y) in the domain of f , then f has an absolute
minimum at (a, b).

The next theorem explains how to find local maxima and local minima for a function
in two variables.

Theorem 35 If f has a local maximum of minimum at (a, b) and the first-order partial
derivatives of f exist there, then fx(a, b) = 0 and fy(a, b) = 0.

Definition 36 A point (a, b) is called a critical point of f(x, y) if fx(a, b) = fy(a, b) = 0.

The next theorem gives a method for testing critical points of a function f(x, y) to see
if they represent local minima, local maxima or saddle points (a critical point (a, b) is a
saddle point if the Hessian D defined in the next theorem is negative).

Theorem 37 (Second Derivative Test) Suppose the second partial derivatives of f
are continuous on a disk with center (a, b), and suppose that fx(a, b) = 0 and fy(a, b) = 0
(that is, (a, b) is a critical point of f). Let

D = D(a, b) = fxx(a, b)fyy(a, b)− [fxy(a,b)]
2.

(a) If D > 0 and fxx(a, b) > 0, then f(a, b) is a local minimum.

(b) If D > 0 and fxx(a, b) < 0, then f(a, b) is a local maximum.

(c) If D < 0, then f(a, b) is a saddle point.

To remember the formula for D it’s helpful to write it as a determinant:

D =
∣∣∣∣ fxx fxy

fyx fyy

∣∣∣∣ = fxxfyy − (fxy)2.

Example 38 Find the local maximum and minimum values and saddle points of f(x, y) =
x4 + y4 − 4xy + 1.

Solution : We first locate the critical points:

fx = 4x3 − 4y fy = 4y3 − 4x.

Setting these partial derivatives equal to 0, we obtain the equations

x3 − y = 0 y3 − x = 0.

To solve these equations we substitute y = x3 from the first equation into the second one.
This gives

0 = x9 − x = x(x8 − 1) = x(x4 − 1)(x4 + 1) = x(x2 − 1)(x2 + 1)(x4 + 1)
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so there are three real roots: x = 0, 1,−1. The three critical points are (0, 0), (1, 1), and
(−1,−1).

Next we calculate the second partial derivatives and D(x, y):

fxx = 12x2 fxy = −4 fyy = 12y2

D(x, y) = fxxfyy − (fxy)2 = 144x2y2 − 16.

Since D(0, 0) = −16 < 0, it follows from case (c) of the Second Derivative Test that
the origin is a saddle point; that is, f has no local maximum or minimum at (0, 0). Since
D(1, 1) = 128 > 0 and fxx(1, 1) = 12 > 0, we see from case (a) of the test that f(1, 1) = −1
is a local minimum. Similarly, we have D(−1,−1) = 128 > 0 and fxx(−1,−1) = 12 > 0,
so f(−1,−1) = −1 is also a local minimum.

Definition 39 A subset D ⊂ R2 is closed if it contains all of its boundary points.

Definition 40 A subset D ⊂ R2 is bounded if it is contained within some disk in the
plane.

Theorem 41 (Extreme Value Theorem for Functions of Two Variables) If f is
continuous on a closed, bounded set D in R2, then f attains an absolute maximum value
f(x1, y1) and an absolute minimum value f(x2, y2) at some points (x1, y1) and (x2, y2) in
D.

To find the absolute maximum and minimum values of a continuous function f on a
closed, bounded set D:

1. Find the values of f at the critical points of f in D.

2. Find the extreme values of f on the boundary of D.

3. The largest of the values from steps 1 and 2 is the absolute maximum value; the
smallest of these values is the absolute minimum value.

The next theorem is stated for a function f of three variables but there is a similar
theorem for a function of two variables (see Example 43 below).

Theorem 42 (Method of Lagrange Multipliers) To find the maximum and mini-
mum values of f(x, y, z) subject to the constraint g(x, y, z) = k (assuming that these
extreme values exist and ∇g 6= 0 on the surface g(x, y, z) = k):

1. Find all values of x, y, z, and λ such that

∇f(x, y, z) = λ∇g(x, y, z)

and
g(x, y, z) = k.

2. Evaluate f at all the points (x, y, z) that result from step 1. The largest of these
values is the maximum value of f ; the smallest is the minimum value of f .

Example 43 Find the extreme values of the function f(x, y) = x2 + 2y2 on the circle
x2 + y2 = 1.
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Solution : We are asked for the extreme values of f subject to the constraint g(x, y) =
x2 + y2 = 1. Using Lagrange multipliers, we solve the equations ∇f = λ∇g, g(x, y) = 1,
which can be written as

fx = λgx fy = λgy g(x, y) = 1

or as
2x = 2xλ (2)

4y = 2yλ (3)

x2 + y2 = 1. (4)

From (2) we have x = 0 or λ = 1. If x = 0, then (4) gives y = ±1. If λ = 1, then y = 0
from (3), so then (4) gives x = ±1. Therefore, f has possible extreme values at the points
(0, 1), (0,−1) (1, 0), and (−1, 0). Evaluating f at these four points, we find that

f(0, 1) = 2 f(0,−1) = 2 f(1, 0) = 1 f(−1, 0) = 1.

Therefore, the maximum value of f on the circle x2 + y2 = 1 is f(0,±1) = 2 and the
minimum value is f(±1, 0) = 1.

Example 44 Find the extreme values of f(x, y) = x2 + 2y2 on the disk x2 + y2 ≤ 1.

Solution : We will compare the values of f at the critical points with values at the points
on the boundary. Since fx = 2x and fy = 4y, the only critical point is (0, 0). We compare
the value of f at that point with the extreme values on the boundary from Example 43:

f(0, 0) = 0 f(±1, 0) = 1 f(0,±1) = 2.

Therefore, the maximum value of f on the disk x2 + y2 ≤ 1 is f(0,±1) = 2 and the
minimum value is f(0, 0) = 0.

We now start the second material for midterm 2 which concerns double integrals. For
a positive, continuous function f(x, y) defined on a closed and bounded domain D ⊂ R2,
we denote by ∫ ∫

D
f(x, y) dA,

the volume under the graph of f(x, y) over D. This volume for a rectangle R = {(x, y) |
a ≤ x ≤ b, c ≤ y ≤ d} = [a, b] × [b, c] ⊂ R2 can be estimated by the following Midpoint
Rule for Double Integrals described in the next theorem. We also use this rule for defining
the double integral when f(x, y) is not necessarily positive.

Theorem 45 (Midpoint Rule for Double Integrals) Let m, n be positive integers.
Let x0 = a < x1 < x2 < . . . < xm = b be a division of [a, b] into n intervals [xi, xi + 1] of
equal width ∆x = b−a

m . Similarly, let y0 = c < y1 < y2 < . . . < yn = d be a division of
[c, d] into m intervals [yj , yj+1] of equal widths ∆y = d−c

n . Then:∫ ∫
R

f(x, y) dA ≈
m∑

i=1

n∑
j=1

f(xi, yj) ∆A,

where xi is the midpoint of [xi−1, xi] and yj is the midpoint of [yj−1, yj ].
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Definition 46 If f is a continuous function of two variables, then its average value on
a domain D ⊂ R2 is: ∫ ∫

D f(x, y) dA

Area(D) =
∫ ∫

D dA
.

Definition 47 The iterated integral of f(x, y) on a rectangle R = [a, b]× [c, d] is∫ b

a

∫ d

c
f(x, y) dy dx or

∫ d

c

∫ b

a
f(x, y) dx dy.

One calculates the integral
∫ b
a

∫ d
c f(x, y) dy dx by first calculating A(x) =

∫ d
c f(x, y) dy,

holding x constant, and then calculating
∫ b
a A(x) dx and similarly, for calculating the other

integral.

Example 48 Evaluate the iterated integral.∫ 3

0

∫ 2

1
x2y dy dx

Solution : Regarding x as a constant, we obtain∫ 2

1
x2y dy =

[
x2 y2

2

]y=2

y=1

= x2

(
22

2

)
− x2

(
12

2

)
=

3
2
x2.

Thus, the function A in the preceding discussion is given by A(x) = 3
2x2 in this example.

We now integrate this function of x from 0 to 3:∫ 3

0

∫ 2

1
x2y dy dx =

∫ 3

0

[∫ 2

1
x2y dy

]
dx =

∫ 3

0

3
2
x2 dx =

x3

2

]3

0

=
27
2

.

Example 49 Evaluate the iterated integral.∫ 2

1

∫ 3

0
x2y dx dy.

Solution : Here we first integrate with respect to x:∫ 2

1

∫ 3

0
x2y dx dy =

∫ 2

1

[∫ 3

0
x2y dx

]
dy =

∫ 2

1

[
x3

3
y

]x=3

x=0

dy =
∫ 2

1
9y dy = 9

y2

2

]2

1

=
27
2

.

Theorem 50 (Fubini’s Theorem) If f is continuous on the rectangle R = {(x, y) | a ≤
x ≤ b, c ≤ y ≤ d}, then∫ ∫

R
f(x, y) dA =

∫ b

a

∫ d

c
f(x, y) dy dx =

∫ d

c

∫ b

a
f(x, y) dx dy.

More generally, this is true if we assume that f is bounded on R, f is discontinuous only
on a finite number of smooth curves, and the iterated integrals exist.

Example 51 Evaluate the double integral
∫ ∫

R(x−3y2) dA, where R = {(x, y) | 0 ≤ x ≤
2, 1 ≤ y ≤ 2}.
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Solution : Fubini’s Theorem gives∫ ∫
R
(x− 3y2) dA =

∫ 2

0

∫ 2

1
(x− 3y2) dy dx =

∫ 2

0

[
xy − y3

]y=2

y=1
dx

=
∫ 2

0
(x− 7) dx =

x2

2
− 7x

]2

0

= −12.

Example 52 Find the volume of the solid S that is bounded by the elliptic paraboloid
x2 + 2y2 + z = 16, the planes x = 2 and y = 2, and the three coordinate planes.

Solution : We first observe that S is the solid that lies under the surface z = 16−x2−y2

and above the square R = [0, 2] × [0, 2]. We are now in a position to evaluate the double
integral using Fubini’s Theorem. Therefore

V =
∫ ∫

R
(16− x2 − 2y2) dA =

∫ 2

0

∫ 2

0
(16− x2 − 2y2) dx dy

=
∫ 2

0
[16x− 1

3
x3 − 2y2x]x=2

x=0 dy

=
∫ 2

0
(
88
3

y − 4y2) dy =
[
88
3
− 4

3
y3

]2

0

= 48.

In general, for any continuous function f(x, y) on a closed and bounded domain D ⊂
R2, the integral

∫
D

∫
f(x, y) dA is defined and it is equal to the area under the graph of

f(x, y) on D when the function is positive. There are two cases for D, called type I and
types II, where the integral ∫ ∫

D
f(x, y) dA

can be calculated in a straightforward manner.

Definition 53 A plane region D is said to be of type I, if it can be expressed as

D = {(x, y) | a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)},

where g1(x) and g2(x) are continuous.

Definition 54 A plane region D is said to be of type II, if it can be expressed as

D = {(x, y) | c ≤ y ≤ d, h1(y) ≤ x ≤ h2(y)},

where h1 and h2 are continuous.

Theorem 55 If f is continuous on a type I region D such that

D = {(x, y) | a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)},

then ∫ ∫
D

f(x, y) dA =
∫ b

a

∫ g2(x)

g1(x)
f(x, y) dy dx.
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Theorem 56 ∫ ∫
D

f(x, y) dA =
∫ d

c

∫ h2(y)

h1(y)
f(x, y) dx dy.

where D is a type II region given by Definition 54.

Example 57 Evaluate
∫ ∫

D(x+2y) dA, where D is the region bounded by the parabolas
y = 2x2 and y = 1 + x2.

Solution : The parabolas intersect when 2x2 = 1 + x2, that is x2 = 1, so x = ±1. We
note that the region D, is a type I region but not a type II region and we can write

D = {(x, y)− 1 ≤ x ≤ 1, 2x2 ≤ y ≤ 1 + x2}.

Since the lower boundary is y = 2x2 and the upper boundary is y = 1 + x2, Definition 53
gives ∫ ∫

D
(x + 2y) dA =

∫ 1

−1

∫ 1+x2

2x2

(x + 2y) dy dx =
∫ 1

−1

[
xy + y2

]y=1+x2

y=2x2 dx

=
∫ 1

−1
(−3x4 − x3 + 2x2 + x + 1) dx

= −3
x5

5
− x4

4
+ 2

x3

3
+

x2

2
+ x

∣∣∣∣1
−1

=
32
15

.

Example 58 Find the volume of the solid that lies under the paraboloid z = x2 + y2 and
above the region D in the xy-plane bounded by the line y = 2x and the parabola y = x2.

Solution 1: We see that D is a type I region and

D = {(x, y) | 0 ≤ x ≤ 2, x2 ≤ y ≤ 2x}.

Therefore, the volume under z = x2 + y2 and above D is

V =
∫ ∫

D
(x2 + y2) dA =

∫ 2

0

∫ 2x

x2

(x2 + y2) dy dx

=
∫ 2

0

[
x2y +

y3

3

]y=2x

y=x2

dx =
∫ 2

0

[
x2(2x) +

(2x)3

3
− x2x2 − (x2)3

3

]
dx

=
∫ 2

0

(
−x6

3
− x4 +

14x3

3

)
dx = −x7

21
− x5

5
+

7x4

6

]2

0

=
216
35

.

Solution 2: We see that D can also be written as a type II region:

D = {(x, y) | 0 ≤ y ≤ 4,
1
2
y ≤ x ≤ √

y}.

Therefore, another expression for V is

V =
∫ ∫

D
(x2 + y2) dA =

∫ 4

0

∫ √
y

1
2
y

(x2 + y2) dx dy
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=
∫ 4

0

[
x3

3
+ y2x

]x=
√

y

x= 1
2
y

dy =
∫ 4

0

(
y

3
2

3
+ y

5
2 − y3

24
− y3

2

)
dy

=
2
15

y
5
2 +

2
7
y

7
2 − 13

96
y4

]4

0

=
216
35

.

Example 59 Evaluate the iterated integral
∫ 1
0

∫ 1
x sin(y2) dy dx.

Solution : If we try to evaluate the integral as it stands, we are faced with the task of first
evaluating

∫
sin(y2) dy. But it’s impossible to do so in finite terms since

∫
sin(y2) dy is not

an elementary function. So we must change the order of integration. This is accomplished
by first expressing the given iterated integral as a double integral. We have∫ 1

0

∫ 1

x
sin(y2) dy dx =

∫ ∫
D

sin(y2) dA,

where
D = {(x, 0 | 0 ≤ x ≤ 1, x ≤ y ≤ 1)}.

We see that an alternative description of D is

D = {(x, y) | 0 ≤ y ≤ 1, 0 ≤ x ≤ y}.

This enables us to express the double integral as an iterated integral in the reverse order:∫ 1

0

∫ 1

x
sin(y2) dy dx =

∫ ∫
D

sin(y2) dA =
∫ 1

0

∫ y

0
sin(y2) dx dy =

∫ 1

0

[
x sin(y2)

]x=y

x=0
dy

=
∫ 1

0
y sin(y2) dy = −1

2
cos(y2)

]1

0

=
1
2
(1− cos 1).


