
Review guide for midterm 1.
February 2, 2009

1 Basics.

First we cover the basic definitions and then we go over related problems. Note that the
material for the actual midterm may include material from the review guide for midterm
2. Before the exam, view the updated web course web page for the exact material covered
on midterm 1.

Definition 1 Let n be a positive integer. Then the cartesian product of n copies of the
real number line R is:

Rn = R× R× . . .× R = {(a1, a2, . . . , an | aj ∈ R)},

which is the set of all ordered n-tuples of real numbers.

Example 2 (a) R2 = R× R = {(a1, a2) | ai ∈ R} is the Euclidean plane.

(b) R3 = R× R× R = {(a1, a2, a3) | ai ∈ R3} is Euclidian three-space.

There are two standard notations for points in R3, or more generally Rn. If P ∈ R3,
then P = (a1, a2, a3) for some scalars a1, a2, a3. The book also denotes this point by writing
P (a1, a2, a3). The scalar a1 is called the x-coordinate of P , a2 is called the y-coordinate
of P and a3 is called the z-coordinate of P .

Example 3 The point P = (1, 0, 7) in R3 can also be written as P (1, 0, 7). Its z-
coordinate is 7.

Definition 4 (a) Given points P = (x1, y1, z1) and Q = (x2, y2, z2) in R3, then
−→
PQ =

〈x2−x1, y2− y1, z2− z1〉 denotes the arrow or vector based at P with terminal point
Q.

(b) If λ ∈ R is a scalar and v = 〈a, b, c〉 is a vector, then consider the new vector
λv = 〈λa, λb, λc〉; if λ > 0, then λv is the vector pointed in the direction v and has
length λ|v|; if λ < 0, then λv is the vector pointed in the opposite direction of v
with length |λ||v|.

(c) If u = 〈x1, y1, z1〉 and v = 〈x2, y2, z2〉, then u + v = 〈x1 + x2, y1 + y2, z1 + z2〉. In
other words, vectors add by adding their coordinates.

Definition 5 If a = 〈x1, y1, z1〉 and b = 〈x2, y2, z2〉, then the dot product of a and b is:

a · b = x1x2 + y1y2 + z1z2.

Example 6 The dot product of 〈1, 2, 3〉 and 〈1, 0, 7〉 is

〈1, 2, 3〉 · 〈1, 0, 7〉 = 1 + 0 + 21 = 22.

It turns out that the length of a vector can be found by using the dot product and it
satisfies some nice algebraic properties listed in the next two theorems.
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Theorem 7 Let a = 〈x1, y1, z1〉 be vector and let P = (x2, y2, z2), Q = (x3, y3, z3) be
points. Then:

1. The length of a is |a| =
√

a · a =
√

x2
1 + y2

1 + z2
1 .

2. The distance d(P,Q) from the point P to the point Q is:

d(P,Q) = |
−→
PQ| =

√
(x3 − x2)2 + (y3 − y2)2 + (z3 − z2)2

Theorem 8 (Basic algebraic properties of dot product) Let a = 〈x1, y1, z1〉, b =
〈x2, y2, z2〉, c = 〈x3, y3, z3〉 be vectors and let λ be a scalar.

1. a · b = b · a.

2. (a + b) · c = a · c + b · c.

3. (λa) · b = λ(a · b).

Definition 9 The sphere in R3 with center C = (x0, y0, z0) and radius r is the set where
(x − x0)2 + (y − y0)2 + (z − z0)2 = r2. Note that this sphere is geometrically the set of
points (x, y, z) of distance r from the point (x0, y0, z0).

Example 10 Consider the subset of R3 defined by x2 + y2 + 6y + z2 + 2z = 26. By
completing the square, we have

x2 + (y2 + 6y + 9) + (z2 + 2z + 1) = 26 + 10 = 36,

which simplifies to be
x2 + (y + 3)2 + (z + 1)2 = 62.

So this set is the sphere centered at (0,−3,−1) of radius 6.

For convenience, it is useful to pick out the special unit vectors pointed respectively along
the positive x, y and z-axes, as given in the next definition.

Definition 11 We define the standard basic vectors for R3 as follows: i = 〈1, 0, 0〉, j =
〈0, 1, 0〉, k = 〈0, 0, 1〉. Note that the vector 〈a, b, c〉 can be expressed by 〈a, b, c〉 = ai+ bj+
ck.

For nonzero vectors a,b
a · b = |a||b| cos(θ),

where θ ∈ [0, π] is the angle between the vectors. It follows that:

1. a and b are orthogonal or perpendicular if and only if a · b = 0.

2. The angle θ between a and b is an acute angle if and only if a · b > 0

3. The angle θ between a and b is an obtuse angle if and only if a · b < 0.

4. cos(θ) = a·b
|a||b| .

5. θ = arccos( a·b
|a||b|) = cos−1( a·b

|a||b|) In particular, if a and b are unit vectors, then
θ = arccos(a · b).
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Definition 12 1. The scalar projection (component) of b onto a is compab = a·b
|a| . In

particular, if a is a unit vector, then compab = a · b.

2. The vector projection of b onto (in the direction of) a is a projab = (a·b
a·a )a. In

particular, if a is a unit vector, then projab = (a · b)a.

3. The direction cosines of the vector b are:

(a) cos(α) = b
|b| · i,

(b) cos(β) = b
|b| · j,

(c) cos(γ) = b
|b| · k,

and so, α, β, γ are the respective angles that b makes with the x, y and z-axes.

Example 13 The vectors 〈1, 2,−1〉 and 〈3,−1, 1〉 are orthogonal, since 〈1, 2,−1〉·〈3,−1, 1〉 =
3− 2− 1 = 0.

Example 14 Consider the vectors a = 〈1, 2, 2〉 and b = 〈1, 1, 1〉. Since projab = a·b
a·aa,

then
v = b− projab = 〈1, 1, 1〉 − 5

9
〈1, 2, 2〉 = 〈4

9
,−1

9
,−1

9
〉

must be perpendicular to a and must lie in the plane containing a and b.

Definition 15 1. The determinant of the matrix M with rows vectors v = 〈a, b〉 and

w = 〈c, d〉 can be calculated by: |M | =
∣∣∣∣ a b

c d

∣∣∣∣ = ad− bc.

The absolute value |ad− bc| of this determinant equals the area of the parallelogram
with sides v and w.

2. The determinant of the matrix M with rows vectors a = 〈a1, a2, a3〉, b = 〈b1, b2, b3〉
and c = 〈c1, c2, c3〉 can be calculated by:

|M | =

∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣ = a1

∣∣∣∣ b2 b3

c2 c3

∣∣∣∣− a2

∣∣∣∣ b1 b3

c1 c3

∣∣∣∣ + a3

∣∣∣∣ b1 b2

c1 c2

∣∣∣∣
The absolute value of the determinant |M | equals the volume of the parallelepiped
or box spanned by the vectors a, b and c.

3. The cross product a × b of vectors a = 〈a1, a2, a3〉 and b = 〈b1, b2, b3〉 can be
calculated by:

a× b =

∣∣∣∣∣∣
i j k
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣ =
∣∣∣∣ a2 a3

b2 b3

∣∣∣∣ i− ∣∣∣∣ a1 a3

b1 b3

∣∣∣∣ j +
∣∣∣∣ a1 a2

b1 b2

∣∣∣∣k.

The length of a× b is given by: |a× b| = |a||b| sin(θ), where θ ∈ [0, π] is the angle
between a and b. Also |a×b| is area of the parallelogram with sides a and b. Note
that it follows that area of the triangle with vertices 〈0, 0, 0〉 and the position vectors
a and b is |a×b|

2 .
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Example 16 Consider the points A = (1, 0, 1), B = (0, 2, 3) and C = (−1,−1, 0). Then
the area of the triangle 4 with these vertices can be found by taking the area of the

parallelogram spanned by
−→
AB and

−→
AC and dividing by 2. Thus:

Area(4) =
|
−→
AB×

−→
AC|

2
=

1
2

∣∣∣∣∣∣
∣∣∣∣∣∣

i j k
−1 2 2
−2 −1 −1

∣∣∣∣∣∣
∣∣∣∣∣∣ =

1
2
|〈0,−5, 5〉| = 1

2
√

0 + 25 + 25 =
1
2

√
50

Example 17 Consider the vectors a = 〈1, 0, 1〉, b = 〈0, 2, 3〉 and c = 〈−1, 7, 0〉. Then the
volume of the parallelepiped or box spanned by these 3 vectors is:∣∣∣∣∣∣

∣∣∣∣∣∣
1 0 1
0 2 3
−1 7 0

∣∣∣∣∣∣
∣∣∣∣∣∣ = | − 21− 0 + 2| = | − 19| = 19

Definition 18 If F is a force with magnitude A applied in the unit direction a
|a| to an

object in order to move it from the point P to the point Q, then the work W done is:

W = A
|a|a ·

−→
PQ.

Example 19 If F is a force of 10N (10 Newtons) applied in the unit direction 1√
6
〈2, 1, 1〉

to an object to move it from P = (−3,−2, 5) to Q = (1, 2, 3), then the work done is (length
measured in meters):

W =
10N√

6
〈2, 1, 1〉 · 〈4, 4,−2〉 =

100Nm√
6

,

where m is one meter.

Definition 20 The torque τ on a rigid body with position vector a with a force of mag-
nitude A in the unit direction b

|b| is:

τ = a×A
b
|b|

.

Example 21 What is the magnitude (the length) of the torque on a rigid body with
position vector a = 〈1,−1, 3〉 with a force of 10N in the direction of b

|b| = 1√
6
〈2, 1, 1〉

(length measured in meters m) ?

Solution :

|τ | = |〈1,−1, 3〉 × 10Nm√
6

〈2, 1, 1〉| = |10Nm√
6

〈−4, 5, 3〉| = 10Nm ·
√

50√
6

.

Definition 22 Given a point P = (x0, y0, z0) and a vector v = 〈a, b, c〉, the vector
equation of the line L passing through P in the direction of v is:

r(t) = P + tv = 〈x0, y0, z0〉+ t〈a, b, c〉 = 〈x0 + at, y0 + bt, z0 + ct〉.

The resulting equations:
x = x0 + at,
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y = y0 + bt,

z = z0 + ct,

are called the parametric equations for L. The resulting equations (solving for t):

x− x0

a
=

y − y0

b
=

z − z0

c
,

are called the symmetric equations for L.

Example 23 The vector equations for the line L passing through P = (1, 2, 3) and Q =
〈4, 0, 7〉 are given by:

r(t) = P + t
−→
PQ = 〈1, 2, 3〉+ t〈3,−2, 4〉 = 〈1 + 3t, 2− 2t, 3 + 4t〉.

Definition 24 The plane passing through the point P = (x0, y0, z0) with normal vector
n = 〈a, b, c〉 is given by the following equation, where (x, y, z) denotes a general point on
the plane:

0 = n · 〈x− x0, y − y0, z − z0〉.

Equivalently, we have:

a(x− x0) + b(y − y0) + c(z − z0) = 0.

Example 25 The equation of the plane passing through P = (1, 2, 3) and with normal
vector n = 〈−3, 4, 1〉 is:

−3(x− 1) + 4(y − 2) + (z − 3) = 0.

Example 26 Find the equation of the plane passing through points P = (1, 0, 2), Q =
(4, 2, 3), R = (2, 0, 4).

Solution : Since a plane is determined by its normal vector n and a point on it, say the
point P , it suffices to find n. Note that:

n =
−→
PQ×

−→
PR =

∣∣∣∣∣∣
i j k
3 2 1
1 0 2

∣∣∣∣∣∣ = 〈4,−5,−2〉.

So the equation of the plane is:

4(x− 1)− 5y − 2(z − 2) = 0.

Given two planes with unit normal vectors n1 and n2, respectively, then the cosine of
the angle between them is the cosine of the angle between the lines determined by n1 and
n2, which can be calculated using dot products.

Example 27 The cosine of the angle θ between x− 2y + 2z = 1 and 2x− y + 2z = 10 is
given by

cos(θ) = |1
3
〈1,−2, 2〉 · 1

3
〈2,−1, 2〉| = 1

9
(2 + 2 + 4) =

8
9
.
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Definition 28 Let r(t) be a vector valued curve in R3, where r(t) = 〈f(t), g(t), h(t)〉.
Here t is called the parameter of r(t). If the derivative r′(t) = limh→0

r(t+h)−r(t)
h exists

for each t, then the curve r(t) is called differentiable and r′(t) is called the derivative or
velocity or tangent vector field v(t) = r′(t) to the curve r(t). The length |v(t)| is called
the speed of the curve r at the parameter value t.

Theorem 29 If r(t) = 〈f(t), g(t), h(t)〉 is a differential curve in R3, then:

r′(t) = 〈f ′(t), g′(t), h′(t)〉.

Conversely, if f(t), g(t), h(t) are differentiable functions, then r(t) is differentiable. The
speed function for r(t) is then:

speed(t) =
√

(f ′(t))2 + (g′(t))2 + (h′(t))2.

Example 30 Suppose r(t) = 〈t, sin(2t), t2 + 1〉, then r′(t) = 〈1, 2 cos(2t), 2t〉 with r′(0) =
〈1, 2, 0〉. Hence, the tangent line to r(t) at t = 0 is given by:

L(t) = r(0) + tr′(0) = 〈0, 0, 1〉+ t〈1, 2, 0〉 = 〈t, 2t, 1〉

and the speed function of r(t) is: speed(t) =
√

1 + 4 cos2(2t) + 4t2.

Definition 31 The length L of a parametrizing curve r(t) in R3 on a time interval [a, b]
is

L =
∫ b

a
|r′(t)|dt.

Example 32 If r(t) = 〈sin(t), cos(t), 2t〉, then r′(t) = 〈cos(t),− sin(t), 2〉 with constant
speed

√
cos2(t) + sin2(t) + 4 =

√
5. Hence, the length of r(t) from time t = 1 to time

t = 6 is:

L =
∫ 6

1

√
5 dt =

√
5t

∣∣∣∣6
1

=
√

5(6)−
√

5(1) = 5
√

5.

2 Some practice problems solved.

1. Find parametric equations for the line which contains A(2, 0, 1) and B(−1, 1,−1).

Solution : Let v =
−→
AB = 〈2, 0, 1〉−〈−1, 1,−1〉 = 〈3,−1, 2〉. Since A(2, 0, 1) lies on

the line, then:
x = 2 + 3t,

y = 0− t = −t,

z = 1 + 2t.

2. Determine whether the lines l1 : x = 1+2t, y = 3t, z = 2−t and l2 : x = −1+s, y =
4 + s, z = 1 + 3s are parallel, skew or intersecting.

Solution : Vector part of line l1 is v1 = 〈2, 3,−1〉 and for line l2 is v2 = 〈1, 1, 3〉.
Clearly, v1 is not a scalar multiple of v2 and so these lines are not parallel. If these
lines intersect, then for some values of t and s:

x = 1 + 2t = −1 + s ⇒ 2t = −2 + s,
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y = 3t = 4 + s ⇒ 3t = 4 + s.

Solving these two linear equations yields:

t = 6 and s = 14.

Plugging these values into z = 2 − t = 1 + 3s yields the inequality −4 6= 43, which
means there is no solution and the lines do not intersect. Thus, the lines are skew.

3. Find an equation of the plane which contains the points P (−1, 2, 1), Q(1,−2, 1) and
R(1, 1,−1).

Solution : Consider the vectors
−→
PQ = 〈2,−4, 0〉 and

−→
PR = 〈2,−1,−2〉 which lie

parallel to the plane. Then consider the normal vector:

n =
−→
PQ×

−→
PR =

∣∣∣∣∣∣
i j k
2 −4 0
2 −1 −2

∣∣∣∣∣∣ = 8i + 4j + 6k.

So the equation of the plane is given by:

〈8, 4, 6〉 · 〈x + 1, y − 2, z − 1〉 = 8(x + 1) + 4(y − 2) + 6(z − 1) = 0.

4. Find the distance from the point (1, 2,−1) to the plane 2x + y − 2z = 1.

Solution : The normal to the plane is n = 〈2, 1,−2〉 and the point P = (0, 1, 0)
lies on this plane. Consider the vector from P to (1, 2,−1) which is v = 〈1, 1,−1〉.
The distance from (1, 2,−1) to the plane is equal to:

|compnv| =
∣∣∣∣v · n

|n|

∣∣∣∣ = |〈1, 1,−1〉 · 1
3
〈2, 1,−2〉| = 5

3
.

5. Let two space curves

r1(t) = 〈cos(t− 1), t2 − 1, t4〉, r2(s) = 〈1 + ln s, s2 − 2s + 1, s2〉,

be given where t and s are two independent real parameters. Find the cosine of the
angle between the tangent vectors of the two curves at the intersection point (1, 0, 1).

Solution : After taking derivatives, we obtain:

r′1(t) = 〈− sin(t− 1), 2t, 4t3〉,

r′2(s) = 〈1
s
, 2s− 2, 2s〉.

At the point (1, 0, 1), t = 1 and s = 1 and so, r′1(1) = 〈0, 2, 4〉 and r′2(1) = 〈1, 0, 2〉
are the related tangent vectors. Thus,

cos(θ) =
r′1(1)
|r′1(1)|

· r′2(1)
|r′2(1)|

=
8√

20
√

5
=

4
5
.
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6. Suppose a particle moving in space has velocity

v(t) = 〈sin(t), cos(2t), et〉

and initial position r(0) = 〈1, 2, 0〉. Find the position vector function r(t).

Solution : Since r′(t) = 〈sin(t), cos(2t), et〉, then r(t) =
∫ t v(s)ds. Thus, r(t) =

〈− cos(t) + x0,
1
2 sin (2t) + y0, e

t + z0〉 with r(0) = 〈−1 + x0, y0, 1 + z0〉 = 〈1, 2, 0〉.
Thus, x0 = 2, y0 = 2, z0 = −1 and so, r(t) = 〈− cos(t) + 2, 1

2 sin (2t) + 2, et − 1〉.

7. Find the center and radius of the sphere x2 + y2 + z2 + 6z = 16.

Solution : Complete squares to obtain from x2 + y2 + z2 + 6z = 16, the equation:

x2 + y2 + (z + 3)2 = 16 + 9 = 25.

Hence, the center is at C = (0, 0,−3) and the radius is 5.


