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Abstract

Stadia are popular models of chaotic billiards introduced by Buni-
movich in 1974. They are analogous to dispersing billiards due to
Sinai, but their fundamental technical characteristics are quite differ-
ent. Recently many new results were obtained for various chaotic bil-
liards, including sharp bounds on correlations and probabilistic limit
theorems, and these results require new, more powerful technical ap-
paratus. We present that apparatus here, in the context of stadia, and
prove prove ‘regularity’ properties.

Keywords: Billiards, stadium, hyperbolicity, chaos, absolute continuity, dis-
tortion bounds.

1 Introduction

A billiard is a mechanical system in which a point particle moves in a compact
container Q and bounces off its boundary ∂Q; in this paper we only consider
planar billiards. The billiard flow preserves a uniform measure on its phase
space, and the corresponding collision map (generated by the collisions of the
particle with the boundary, see below) preserves a natural (and often unique)
absolutely continuous measure on its own phase space. The dynamical prop-
erties of a billiard are determined by the shape of the boundary, and they
may vary greatly from completely regular (integrable) to strongly chaotic.

Generally speaking, the boundary of a billiard table may consist of curves
of three types: convex inward (also called dispersing), convex outward (also
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called focusing), and flat (called neutral). Sinai showed [S] that billiards
with all-dispersing boundary are always strongly chaotic; precisely they are
hyperbolic, ergodic, mixing, and have positive entropy. Billiards with all-
flat boundary, i.e. polygons, are never hyperbolic: all of their Lyapunov
exponents are zero; hence their entropy vanishes. Even though billiards in
generic polygons are ergodic [KMS], they never possess strong statistical
properties.

Billiards with focusing (convex) boundary components are much more
diverse. It is an elementary fact that billiards in ellipses are completely
regular (integrable). (Birkhoff conjectured that elliptic billiards were the only
integrable convex billiards, but this yet remains to be proven.) Lazutkin [L]
showed that billiards in generic strictly convex domains with smooth enough
boundary had caustics, hence they could not be ergodic.

On the other hand, L. Bunimovich [B1, B2, B3] constructed chaotic bil-
liards with convex (though not strictly convex) boundary. He also described
a class of chaotic billiards with some focusing boundary components which
may contain other (dispersing and flat) components as well. The most cele-
brated example is his stadium (a table bounded by two identical semicircles
and two parallel lines); it has been subject to subsequent numerous studies
by mathematicians and physicists.

Bunimovich showed that his billiards were hyperbolic, ergodic, and Bernoulli.
Later Markov partitions were constructed [BSC1] and a central limit theorem
for a suitable reduced collision map was proved [BSC2]. For the stadium,
rates of the decay of correlations were estimated from above [CZ1, CZ2] and
below [BG], and a non-classical central limit theorem for the (non-reduced)
collision map was derived in [BG].

Many other billiards with focusing boundaries that have hyperbolic be-
havior were discovered later by Wojtkowski [W], Markarian [M], again Buni-
movich [B4], and Donnay [D]. But beyond hyperbolicity, very little is known
about these systems. In several cases ergodicity is proved [B2, Sz], too, and
correlation rates estimated [CZ1], but a lot more needs to be done. One of
the reasons for slow progress in these studies, perhaps, is the lack of adequate
technical tools.

Many studies of ergodic and statistical properties of chaotic billiards use
certain standard technical apparatus: distortion bounds, curvature bounds,
absolute continuity (this includes estimates on the Jacobian of the holonomy
map), and approximation of stable/unstable manifolds by continued frac-
tions. For Sinai billiards, this machinery has been well developed; detailed
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exposition (with complete proofs) can be found in [S, BSC1, BSC2, C1, C2]
and in the book [CM].

The situation with Bunimovich’s billiards is different: they were studied
after Sinai billiards, and it was often assumed that their basic technical
characteristics were identical to those of Sinai billiards, so detailed proofs
were not deemed necessary (only some fragmental arguments were given in
[B1, B2, BSC1, BSC2], but they left out many details). For more general
chaotic billiards with focusing boundaries (due to Wojtkowski, Markarian,
and Donnay), the above technical tools are essentially undeveloped.

An attempt to undertake a systematic analysis of basic technical char-
acteristics of Bunimovich’s billiards was recently made in [CM, Chapter 8],
but it turned out that full proofs tend to be much longer and more involved
than those known for Sinai billiards (for example, the mere approximation of
stable and unstable manifolds by continued fractions took about 10 pages in
[CM, Chapter 8]). Such complexity of Bunimovich’s billiards is hardly sur-
prising as they are much more diverse than Sinai’s (strictly speaking, they
include Sinai billiards as a very particular case). For this reason most of the
analysis in the book [CM] was restricted to one model – the stadium, other
types of Bunimovich’s billiards had to be left out.

Many results of [CM, Chapter 8] are new, but published only in the mid-
dle of a large book. Here we present them in a self-contained form of a
research article; we hope that it will serve as a basis for further investigation
of statistical properties of chaotic billiards with focusing boundary. In addi-
tion to the (classical, or ‘straight’) stadium, we extend our analysis to a nice
but somewhat forgotten example – a ‘titled’ stadium, or a ‘squash’. It was
originally proposed by Bunimovich (unpublished), investigated numerically
in [FKCD], and later rediscovered in [CZ1], where it was called a ‘drivebelt
table’.

2 Preliminaries

Here we recall basic facts about stadia, see [CM, Chapter 8] for more details.
A stadium is a table bounded by two line segments tangential to two circular
arcs. Bunimovich’s straight stadium, see Fig. 1(a), is made by two equal
semicircles; it was introduced in 1974 [B2] but became popular in 1979 after
the publication of his other article [B3]. A tilted, or drive-belt stadium, see
Fig. 1(b), is bounded by two non-parallel lines and two arcs, one bigger than
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the other. Notice that both stadia have C1, but not C2, boundary. They
remain chaotic no matter how short the parallel segments are; but if they van-
ish, the stadia turn into disks where the billiards are completely integrable.
Thus one gets continuous families of billiard tables where a transition from
a completely regular region to total chaos occurs instantly.
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Figure 1: Straight stadium (a) and drive-belt stadium (b).

Let D ⊂ R
2 be a stadium. Its boundary can be decomposed as

∂D = ∂0D ∪ ∂−D,

where ∂−D = Γ1 ∪ Γ2 denotes the union of two arcs, and ∂D0 = Γ3 ∪ Γ4

consists of straight sides of D. Let M = ∂D × [−π/2, π/2] be the stan-
dard cross-section of the billiard dynamics, we call M the collision space.
Canonical coordinates on M are r and ϕ, where r is the arc length param-
eter on ∂D and ϕ ∈ [−π/2, π/2] is the angle of reflection. The first return
map F : M → M is called the collision map or the billiard map, it preserves
smooth measure dµ = cos ϕ dr dϕ on M. The collision space can be naturally
divided into focussing and neutral parts:

M− = {(r, ϕ) : r ∈ ∂−D}, M0 = {(r, ϕ) : r ∈ ∂0D}.

To avoid unnecessary complications for the drive-belt table, we assume that
the larger arc Γ1 has length

(2.1) |Γ1| = (π + ω)r, ω ∈ (0, π/3].

This guarantees that there are no periodic orbits with more than 2 reflections
off the arc Γ1. We believe that our results can be extended beyond this
restriction with a little extra work.

4



We will use two metrics in the space M: the standard Euclidean metric
‖(dr, dϕ)‖2 = (dr)2+(dϕ)2 and a special billiard-related p-metric ‖(dr, dϕ)‖p =
cos ϕ |dr|. The latter is a version of adapted metrics, in which the given
hyperbolic map expands unstable tangent vectors monotonically, see [CM,
Sections 4.4 and 8.2].

We recall that every smooth curve γ ⊂ M produces a smooth family
of (outgoing) directed lines leaving ∂D; as well as a family of (incoming)
directed lines falling onto ∂D. Tangent vectors u ∈ TxM correspond to
infinitesimal bundles of directed lines. An orthogonal cross section of such a
bundle of directed lines, equipped with properly directed unit normal vectors,
is called a wave front. Its curvature (i.e. the curvature of its cross-section) is
related to the slope of the corresponding tangent vector in M.

Suppose an infinitesimal wave front collides with ∂D at a point x =
(r, ϕ). Denote its precollisional and postcollisional curvature by B− and B+,
respectively (as usual, it is assumed that divergent wave fronts have positive
curvature and convergent fronts negative). The front induces a tangent vector
(dr, dϕ) ⊂ TxM whose slope V = dϕ/dr is given by:

(2.2) V = B− cos ϕ + K = B+ cos ϕ −K,

where K denotes the curvature of the boundary ∂D at the point x. For flat
boundaries K = 0, and for a circular arc of radius r we set K = −1/r (the
negative sign here is just due to traditions in the literature.)

The dynamics of wave fronts plays a crucial role in the analysis of hyper-
bolic billiards as it describes the transformation of tangent vectors to M.
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Figure 2: Infinite tables made by identical stadia with common flat sides.
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If the billiard table has flat sides, it is common to reflect it across its
flat sides so that the trajectories ‘run through’ the flat sides into the mirror
images of the table, as if the flat sides were transparent. This transformation
of billiard trajectories is called unfolding. In the stadia, it is particularly
simple, see below.

Due to a natural symmetry, the mirror image of a straight stadium D
across its flat side is identical to D itself. Further images make an infinite
row of identical stadia with common flat sides; see Fig. 2 (left). Thus we
obtain an unbounded billiard table D∞ whose border consists of two sets of
identical adjacent arcs. Observe that D∞ has no flat boundary component;
all collisions occur at arcs only. A similar picture for the skewed stadium is
shown in Fig. 2 (right).

In stadia, there are three types of long series of nonessential collisions (see
illustration in Fig. 3):
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Figure 3: Three types of nonessential collisions.

Type N1. Collisions occur at flat boundary components only. The un-
folding procedure transforms the corresponding trajectories into straight
lines along which the particle moves without collisions; thus they behave
as collision-free orbits in billiards with infinite horizons.

Type N2. Collisions occur at one focusing arc and |ϕ| ≈ π/2. In this case
the trajectory is almost tangent to the arc, as it ‘slides’ along the arc. Such
series of collisions are said to be sliding.

Type N3. Collisions occur at one focusing arc and |ϕ| is near 0. In this
case the trajectory is close to a periodic orbit running along a diameter of
the corresponding arc; we call such series diametrical (they can occur only
on a focusing arc larger than half-circle).

In order to reduce nonessential collisions, we redefine the map F so that
in every series of collisions with a focusing arc only the very first and the very
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last ones will be kept. Accordingly, we define a subset M♦ ⊂ M consisting
of points x = (q, v) such that q belongs to a semicircle and either its image
F(x) or its preimage F−1(x) does not lie on that same semicircle. (For the
drive-belt table, we also remove points x = (q, v) such that q lies on the
larger arc Γ1, the two points F±1x lie on a flat side, and both points F±2x
lie on Γ1 again; such points and the need for their removal are described in
[CZ1, p. 1551].)

Also, we consider the return map F♦ : M♦ → M♦; i.e. F♦(x) = Fn(x)(x)
where n(x) = min{n > 0: Fn(x) ∈ M♦}. The map F♦ preserves the
measure µ conditioned on M♦, which we denote by µ♦ = [µ(M♦)]−1µ. The
set M♦ consists of two hexagons (corresponding to two arcs) for the straight
stadium; fig. 4(a) shows one hexagon corresponding to the semi-circle Γ1.
For the drive-belt, the region is a more complicated polygon, see Fig. 4(b) .

The parallelogram CBDE (or C ′BD′E) contains all the points of the
first collisions with the arc and ACGD (or AC ′′GD′′) contains all the points
of the last collisions with the arc (their intersection, the rhombus CHDI,
consists of points of only collisions with the arc). The dark triangles contain
points of intermediate collisions, so they are not included in M♦.
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Figure 4: The set M♦.

The map F♦ takes the white region CEI (or C ′EIC) onto the white re-
gion DGI (or D′′GID); likewise, it takes BHD(BHDD′) into ACH(AC ′′C ′H).

Next we describe the action of F♦ on the upper left white region. On the
bigger triangle CEG (or C ′′EG), the original map F acts by the rule

(2.3) (r, ϕ) 7→ (r + r(π − 2ϕ), ϕ);

If a billiard trajectory makes k successive collisions with an arc (along which
the ϕ coordinate remains unchanged), then

(2.4) ϕ =
π

2
− |Γ1|

2kr
+ O

( 1

k2

)

, so cos ϕ =
|Γ1|
2kr

+ O
( 1

k2

)

.
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Now the new map F♦ acts by the rule

(2.5) r 7→ r + kr(π − 2ϕ).

It is linear on each region where k is constant, but there are countably many
such regions in CEI (or CIEC ′) corresponding to different k’s; they are
separated by lines consisting of trajectories hitting the endpoint of our arc
on their last collision with it. So the new map F♦ is piecewise linear and has
countably many discontinuity lines.
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Figure 5: The action of F

The action of F and F♦ in the upper region CEGD (or C ′EGD′′) is
shown in Fig. 5. It is divided by two families of straight lines, each family
converging to one top corner of the hexagon, into countably many quadri-
laterals that make a checkerboard pattern. The original billiard map F
transforms every quadrilateral (linearly) into the next one on the right in
the same horizontal row. The new map F♦ sends the leftmost quadrilateral
onto the rightmost one in the same row. This is illustrated by the following
diagram (see Fig. 5):

F F♦

U 7→ V U 7→ V

a 7→ b 7→ c a 7→ c

1 7→ 2 7→ 3 7→ 4 1 7→ 4

Observe that the lines in the upper left white region are singularities for
the map F♦, while those in the upper right white region are singularities
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for its inverse F−1
♦ . The number of quadrilaterals in each row equals k (the

number of successive collisions with Γ1). The lower white regions in ABDC
(or ABD′C ′′) are divided into quadrilaterals in a similar manner, but the
maps F and F♦ move them from right to left.

The map F♦ has other singularities which make two symmetric families
of self-similar increasing lines accumulating near the vertices C and D, see
Fig. 6. In the straight stadium, these singularities are caused by trajectories
bouncing between the two flat sides while moving slowly from one arc to
the other and eventually hitting an endpoint of the latter. In the drive-belt,
the singularities are caused by near-diametrical trajectories bouncing around
inside the larger arc and eventually hitting its endpoint. These singularities
are described in [CM, Section 8.8] and [CZ1, p. 1551]. If we number the
singularity lines as they approach the vertices C and D, then the nth line
will be O(1/n) away from the limit vertex, and the distance between the nth
and (n + 1)st line will be O(1/n2).

F FPSfrag replacements

AA

C
C

D
D

G

(a) (b)

Figure 6: The singularities of F♦ near C and D: (a) stadium and (b) drive-
belt.

3 Hyperbolicity

Here we use stable and unstable fronts to describe the hyperbolicity of stadia.
Mostly we deal with unstable fronts, but due to the time reversibility stable
fronts have all similar properties. We say that the colliding wave front and
the corresponding tangent vector are unstable if

(3.1) B− ∈
(

0,
1

r cosϕ

)
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whenever K = −1/r < 0.
Denote by Cu

x ⊂ TxM the unstable cone at x ∈ M, i.e. the closure of the
set of all unstable tangent vectors for focusing arcs:

Cu
x = {(dr, dϕ) ∈ TxM : − 1/r ≤ dϕ/dr ≤ 0}.

In this section we prove that the return map F♦ : M♦ → M♦ for any
stadium is uniformly hyperbolic. Given a point x = (r, ϕ) ∈ M♦, we denote
by xn = (rn, ϕn) = Fn

♦(x) its images, by tn the collision time at the point xn,
and by τn = tn+1− tn the intervals between collisions. Also let Kn denote the
curvature of ∂D at the point xn and Rn = 2Kn/ cos ϕn the so called ‘collision
parameter’. Note that n here is the counter of essential collisions only.

Given a tangent vector dx = (dr, dϕ) ∈ TxM♦, we denote by dxn =
(drn, dϕn) = DxFn

♦(dx) its image, by Vn = dϕn/drn its slope, and by B±
n

the curvature of the corresponding wave front before and after the collision;

recall the relation (2.2). Also we denote by ‖dxn‖ =
[

(drn)2 + (dϕn)
2
]1/2

the
Euclidean norm and by ‖dxn‖p = | cos ϕn drn| the so called p-norm of these
tangent vectors. There two norms are clearly related by

‖dxn‖ =
‖dxn‖p

cos ϕn

√

1 + V2
n.

The following relations are standard in the theory of billiards for the original
collision map F (not the induced map F♦):

(3.2)
1

B−
n

=
1

B+
n−1

+ τn−1, B+
n = B−

n + Rn

and the expansion in the p-metric is given by

(3.3)
‖dxn+1‖p

‖dxn‖p
= |1 + τnB+

n | =
|B+

n |
|B−

n+1|
.

They also easily extend to the induced map F♦ if all the nonessential colli-
sions between xn and xn+1 occur at flat components of the boundary (accord-
ing to type N1, see above), cf. [BSC2, CM]. The following lemma extends
these relations to the induced map F♦ in the presence of types N2 and N3
nonessential collisions (but we have to slightly redefine τn and Rn):

Lemma 3.1. Suppose xn and xn+1 are the first and, respectively, the last
collision in a series of collisions at the same circular arc. Then (3.2) and
(3.3) hold if we set τn = −(tn+1 − tn) and Rn = Kn/ cos ϕn.
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Proof. We give a brief argument here, see [CM, Section 8.7] for a more de-
tailed and pictorial analysis, including the notion of ‘virtual trajectories’. Let
an infinitesimal wave front move along the trajectory of xn and experience
m + 1 successive collisions with a circular arc of radius r (the (m + 1)st col-
lision occurs at the point xn+1). Let xn = y0, Fkxn = yk, then xn+1 = ym.
Denote the precollisional and postcollisional curvature of yk by B̄−

k and B̄+
k ,

with B̄−
0 = B−

n and B̄+
k = B+

n+1. It is easy to show for k = 0, 1, ..., m

(3.4) B̄+
k = B̄−

k − 4

τ
,

1

B̄−
k+1

=
1

B̄+
k

+ τ

where τ = 2r cos ϕn. Notice that

B̄+
k = −4/τ + B̄−

k = −4

τ
+

1

τ +
1

− 4
τ

+
1

τ +
.. .

1

− 4
τ

+ B−
n

= −2

τ
+

1

−kτ +
1

− 2
τ

+ B−
n

.(3.5)

Especially, for k = m, we have

B+
n+1 = B̄+

m = −2

τ
+

1

−mτ +
1

− 2
τ

+ B−
n

.

Thus for xn, the first in the series of m + 1 collisions, we set τn = −mτ and
Rn = Rn+1 = Kn/ cos ϕn, and obtain

(3.6) B+
n = Rn + B−

n ;
1

B−
n+1

= τn +
1

B+
n

; B+
n+1 = Rn+1 + B−

n+1,

which implies (3.2). Next, the expansion factor in the p-metric is

(3.7)
‖dyk+1‖p

‖dyk‖p
= |1 + τ B̄+

k | =
|B̄+

k |
|B̄−

k+1|
.
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Then the expansion in the course of the whole series is

‖dxn+1‖p

‖dxn‖p

=
m
∏

k=0

∣

∣1 + τ(−4/τ + B̄−
k )

∣

∣,

which implies (3.3).

In what follows, we use τn as defined in the above lemma, in particular
τmin > 0. In the case of drivebelt, we also have τmax < ∞.

The slope V = dϕ/dr of an unstable vector (dr, dϕ) is always negative; in
fact, −1/r ≤ V < 0 (see (2.2) and (3.1)). In what follows, we also suppose
that its preimage (dr−1, dϕ−1) is an unstable vector, too (this slightly reduces
the size of unstable cones). Let x and x−1 belong to opposite arcs. It is
standard for Bunimovich billiards [B1, B2, CM] that unstable wave fronts
make convergent families of trajectories that focus between collisions and
then become divergent; the key fact is that they travel longer as divergent
fronts than they do as convergent fronts, i.e. the focusing point must lie closer
to x−1 than to x; it divides the interval τ−1 between x−1 and x in the ratio
ρ ≤ 1 − c0, where c0 = c0(D) > 0 is a constant. This implies

‖dx‖p

‖dx−1‖p

=
|B+

−1|
|B−| = ρ−1 ≥ (1 − c0)

−1 > 1.

Note also that 0 ≤ B− ≤ 2/τmin = const, and

(3.8) B− ≤ 1 − c1

r cosϕ
,

where c1 = c1(D) > 0 is a constant. Since the slope of our tangent vector
is V = K + B− cos ϕ and K = −1/r = const, we have −1/r ≤ V ≤ −c1/r.
This can be expressed as V � −1 (our notation a � b means 0 < C1 < a/b <
C2 < ∞ for some positive constants C1, C2 depending only on D).

Now let x and x−1 belong to the same arc (they may be separated by
other, nonessential, sliding or diametrical collisions). In that case we need
to assume that the second preimage of our tangent vector (dr−2, dϕ−2) is
unstable, too, so that we can apply (3.8) to x−1. This implies

B+
−1 = − 1

r cos ϕ−1

+ B−
−1 ≤ − c1

r cos ϕ−1
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according to (3.5). As τ−1 ≤ −τmin < 0, we have

‖dx‖p

‖dx−1‖p
=

∣

∣1 + τ−1B+
−1

∣

∣ ≥ 1 +
c1τmin

r cos ϕ−1
,

which is bounded away from 1.
If x is of type N2, the time τ−1 has the lower bound τ−1 ≥ −τmax > −∞,

and it follows that

− 1

τmin
≤ B− ≤ − 1

τmax + c1/r
,

i.e. B− � −1. If the number k of sliding collisions between the points x−1

and x is large, then cos ϕ � 1/k due to (2.4) and

B+ = − 1

r cos ϕ
+ B− � −k.

If x is of type N3, the time τ−1 has the lower bound τ−1 ≥ −c2k > −∞, and
it follows that

(3.9) − 1

kτmin

≤ B− ≤ − 1

kτmax + c1/r
,

i.e. B− � −1/k. Note that

B+ = − 1

r cos ϕ
+ B− � −1.

For the slope V, we always have

V = −K + B+ cos ϕ = B− cos ϕ � −1/k

(this can also be derived directly from (2.4)–(2.5)).
We summarize the above discussion. There is always a lower bound for

the slope of unstable vectors

(3.10) −∞ < const ≤ V < 0.

The expansion of unstable vectors in the p-metric is always uniform:

(3.11)
‖dxn+1‖p

‖dxn‖p
= |1 + τnB+

n | ≥ Λ > 1,
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where Λ = Λ(D) > 1 is a constant. Moreover, when cos ϕn is small, a better
estimate is available:

(3.12)
‖dxn+1‖p

‖dxn‖p
= |1 + τnB+

n | �
|τn|

cos ϕn
.

For the expansion in the Euclidean metric we have

(3.13)
‖dxn‖
‖dx0‖

=
‖dxn‖p

‖dx0‖p

cos ϕ0

cos ϕn

√

1 + V2
n

√

1 + V2
0

.

The last fraction is uniformly bounded away from zero and infinity due to
(3.10). To deal with the middle fraction, we use (3.12) with n = 0 and obtain

(3.14)
‖dxn‖
‖dx0‖

≥ const × ‖dxn‖p

‖dx1‖p

≥ ĉ Λn,

where ĉ = ĉ(D) > 0 is a constant. Thus the hyperbolicity is uniform in the
Euclidean metric, too. Note, however, that the expansion of unstable vectors
is always monotone in the p-metric, but it may not be so in the Euclidean
metric.

We also note that

(3.15)
‖dxn+1‖
‖dxn‖

=
‖dxn+1‖p

‖dxn‖p

cos ϕn

cos ϕn+1

√

1 + V2
n+1

√

1 + V2
n

� |τn|
cos ϕn+1

which is useful when cos ϕn+1 ≈ 0.
There are four ‘problematic’ regions in the reduced collision space M♦

where the quantities we deal with approach zero or infinity. These are the
first and the last collisions in a long series of k � 1 sliding collisions with an
arc. Also, these are collisions preceding a long series of k � 1 reflections off
the flat sides of the original stadium and the first collisions in a long series
of k � 1 diametrical collisions with the larger arc of the drivebelt table.
Such points are located in the vicinities of the vertices A, B, E, G and C, D,
respectively, in the hexagon in Fig. 4.

Table 1 presents asymptotic behavior (in the sense of �) of various quan-
tities at these three types of ‘problematic’ collisions (for example, at the first
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collision
type:

before a series
of k reflections

in a series of k
sliding collisions:

in a series of k
diametrical coll’s:

at flat sides first one last one first one last one

τ k −1 1 −k 1

cos ϕ 1 1/k 1/k 1 1

B− 1/k 1 −1 1/k 1

R −1 −k −k −1 1

B+ −1 −k −k −1 −1

V = dϕ/dr −1 −1 −1/k −1 −1/k

|1 + τB+| k k k k 1

Table 1: Asymptotics of various quantities at five types of ‘problematic’
collisions.

sliding collision τ � −1, cos ϕ � 1/k, etc.). All the formulas in the table
follow immediately from our previous analysis or from each other.

The last line in Table 1 describes the expansion of unstable curves in the
p-metric, and now we describe it in the Euclidean metric. If x ∈ M♦ is the
first sliding collision, then cos ϕ = cos ϕ1 (� 1/k); hence ‖dx1‖/‖dx‖ � k �
‖dx1‖p/‖dx‖p.

Let x ∈ M♦ be the last collision in a long series of k � 1 sliding collisions
with an arc. Clearly, F♦(x) is the first collision in another long series of
k1 � 1 of sliding collisions with the opposite arc. In fact, c

√
k ≤ k1 ≤ Ck2

for some constants c, C > 0.
Since cos ϕ1 � 1/k1, we obtain due to (3.15)

(3.16) c
√

k ≤ ‖dx1‖/‖dx‖ ≤ Ck2

for some constants c, C > 0. Now let x ∈ M♦ precede a long series of k � 1
reflections off the flat sides of the original stadium or precede a series of k
diametrical collisions with the larger arc of the drivebelt. Then F♦(x) also
precedes another long series of k1 same type of non-essential collisions.

In [BSC1, BSC2, CZ1], it was shown for both cases, cm ≤ k1 ≤ Cm for
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some constants c, C > 0. As a result for both cases, ‖dx1‖/‖dx‖ � k �
‖dx1‖p/‖dx‖p.

4 Stable and unstable curves

Here we consider stable and unstable curves in the reduced collision space
M♦ of a stadium. Stable curves have positive slope and unstable curves
have negative slope. These curves cannot self-intersect. Their lengths (in
both metrics, | · | and | · |p) are uniformly bounded. If W u is an unstable
curve and W s a stable curve, then their intersection W u ∩ W s is transversal
and consists of at most one point.

We note that the singularity lines of the map F♦ are increasing (stable)
curves, so each unstable curve intersects every singularity line in at most one
point. Thus the image F♦(W ) of any unstable curve W ⊂ M♦ is a finite or
countable union of unstable curves, which we call the components of F♦(W ).

Now we establish the C2 smoothness of these curves, with uniformly
bounded second derivatives (for dispersing billiards, uniform bounds have
been established for higher order derivatives as well [CM, Chapter 4], but
here we do not go beyond the second derivative to avoid unnecessary compli-
cations). Our curves contain endpoints and the smoothness always extends
to one-sided derivatives at those.

Proposition 4.1. For every C2 smooth unstable curve W ⊂ M♦ there is
an nW ≥ 1 such that for all n > nW every smooth component W ′ ⊂ Fn

♦(W )
has its second derivative uniformly bounded:

(4.1) |d2ϕn/dr2
n| ≤ C

on W ′, where C = C(D) > 0 is a constant.

Proof. We will suppress the index n for brevity. Let (r, ϕ(r)) denote a point
on W ′. Differentiating (2.2) (in which K ≡ const) gives

(4.2) d2ϕ/dr2 = −B−V sin ϕ + cos ϕ dB−/dr.

The first term is uniformly bounded; hence the second derivative would be
bounded if we prove

(4.3) |dB−/dr| ≤ C ′
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on W ′, where C ′ = C ′(D) > 0 is a constant.
Since W is C2 smooth, supW |d2ϕ/dr2| < ∞; hence

(4.4) sup
W

| cosϕ dB−/dr| < ∞

due to (4.2). Using our standard notation, we have for n ≥ 1

1

B−
n

=
1

B+
n−1

+ τn−1, B+
n = B−

n + Rn

hence differentiating both sides of above formula with respect to rn gives

dB−
n

drn
=

[ B−
n

B+
n−1

]2 dB+
n−1

drn
− [B−

n ]2
dτn−1

drn

= −
[

B−
n

]2 dτn−1

drn
+

(‖dxn−1‖p

‖dxn‖p

)2(
dRn−1

drn
+

dB−
n−1

drn

)

.(4.5)

First we check that

(4.6) |dτn−1/drn| � 1,

which is straightforward for type N1 collisions. A different case appears when
xn−1 is the first collision in a type N2 series of k collisions with an arc. Then
|τn−1| = 2(k − 1)r cos ϕn; hence

dτn−1

drn
= −2(k − 1)r sin ϕn · Vn

Notice that |Vn| � 1/k. So dτn−1

drn
is uniformly bounded. Thus the first term

in (4.5) is always uniformly bounded.
Next

dRn−1

drn
=

dRn−1

drn−1
× drn−1

drn
= −2Vn−1 sin ϕn−1

r cos2 ϕn−1
× drn−1

drn
.

Note that |drn| = ‖dxn‖/
√

1 + V2
n � ‖dxn‖; hence |drn−1/drn| � ‖dxn−1‖/‖dxn‖,

which is uniformly bounded due to uniform hyperbolicity (3.14). The factor
cos2 ϕn−1 in the denominator is absorbed by [1 + τn−1B+

n−1]
2 due to (3.12);

thus
1

[1 + τn−1B+
n−1]

2

∣

∣

∣

∣

dRn−1

drn

∣

∣

∣

∣

≤ const.
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If xn−1 is of type N2, then we represent |drn−1/drn| as
∣

∣

∣

∣

drn−1

drn

∣

∣

∣

∣

=
‖dxn−1‖p

‖dxn‖p

× cos ϕn

cos ϕn−1

=
θnwn

wn−1

where
θn = |1 + τnB+

n |−1 = ‖dxn‖p/‖dxn+1‖p

and
wn = θ−1

n cos ϕn = |1 + τnB+
n | cosϕn.

Observe that θn ≤ Λ−1 < 1 and wn is bounded above and below due to
(3.12), i.e.

0 < wmin ≤ wn ≤ wmax < ∞.

Combining these estimates with (4.5) gives

(4.7)

∣

∣

∣

∣

dB−
n

drn

∣

∣

∣

∣

≤ C ′′ + θ2
n−1θn

wn

wn−1

∣

∣

∣

∣

dB−
n−1

drn−1

∣

∣

∣

∣

where C ′′ = C ′′(D) > 0 is a constant. A simple recursive application of (4.7)
gives

∣

∣

∣

∣

dB−
n

drn

∣

∣

∣

∣

≤ wmax

wmin

(

C ′′

1 − Λ−3
+ Λ−3n+1θ0

∣

∣

∣

∣

dB−

dr

∣

∣

∣

∣

)

.

Note that due to (4.4) and (3.12) we have supW θ0|dB−/dr| < ∞, so (4.3) is
proved.

It remains to treat type N3 series of collisions. If xn−1 is of type N3, then
(‖dxn−1‖p

‖dxn‖p

)2dB−
n−1

drn
= θ3

n−1

cos ϕn

cos ϕn−1

dB−
n−1

drn−1
,

thus
dB−

n

drn

≤ C ′ + θ3
n−1

cos ϕn

cos ϕn−1

dB−
n−1

drn−1

A simple recursive application of above formula gives
∣

∣

∣

∣

dB−
n

drn

∣

∣

∣

∣

≤ C ′C
(

1 + Λ−2 + Λ−4 + · · · + Λ−2n
)

+ C2Λ−2n cos ϕ
dB
dr

≤ C ′′(1 − Λ−2)−1 + C2Λ−2n cos ϕ
dB
dr

.

Lastly, note that due to (4.4) and (3.12) we have supW cos ϕ |dB−/dr| < ∞,
which completes the proof of Proposition 4.1.
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We remark that due to the time reversibility, stable curves all have similar
(dual) properties.

Next, we describe singularities for the map F♦. Put Ŝ0 = ∂M♦ and
denote by Ŝn the singularities of the map Fn

♦. Singularity curves for the map
F♦ are stable and those for F−1

♦ are unstable. It is easy to check directly that
these curves have uniformly bounded curvature (some of them are actually
straight lines). Thus all the curves in Ŝn \ Ŝ0 for n ≥ 1 are stable and have
uniformly bounded curvature, and all the curves in Ŝ−n \ Ŝ0 for n ≥ 1 are
unstable and also have uniformly bounded curvature.

It is easy to see that singularities of the map F♦ have the same general
properties as they do in dispersing billiards [CM, Chapter 4]. In particular,
the alignment of singularity lines takes place, i.e. the angle between the sin-
gularity lines of Fn

♦ (or F−n
♦ ) and stable (resp., unstable) manifolds converges

to zero as n → ∞. Also, the continuation of singularity lines holds, i.e. every
singularity curve of Fn

♦ terminates either on another singularity curve or on

∂M♦. The singularity curves of Ŝ−n ∪ Ŝm for any m, n > 0 divide M♦ into
curvilinear polygons whose internal angles do not exceed π (the “convexity”).

Note that the sets Ŝ∞ and Ŝ−∞ are dense in M♦ due to the hyperbolicity
of the map F♦. This fact will be used to construct stable and unstable
manifolds in the next section.

5 Stable and unstable manifolds

The properties of singularity curves described in the previous section allow
us to construct stable and unstable manifolds for both stadia.

Let x ∈ M♦ \ Ŝ−∞ and for any n ≥ 1 denote by Q−n(x) the connected
component of the open set M♦ \ Ŝ−n that contains x. The intersection of
their closures

W̃ u(x) : = ∩∞
n=1Q−n(x)

is a closed continuous monotonically increasing curve. The unstable manifold
W u(x) is the curve W̃ u(x) without its endpoints. Its slope at every point
y ∈ W u(x) equals Vu(y) = K + Bu−(y) cosϕ, where the continued fraction
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representing Bu−(y) has the form

(5.1)
1

|t−(y)| + 1

R−1 +
1

τ−2 +
1

R−2 +
1

τ−3 +
1

. . .

.

where t−(y) is the time of the most recent collision in the past. The map
F−n

♦ is smooth on W u(x) for all n ≥ 1, and the preimages of W u(x) contract

under F−1
♦ uniformly and exponentially in time. Proposition 4.1 ensures that

unstable manifolds are C2 smooth and have uniformly bounded derivatives.
Stable manifolds W s(x) for x ∈ M♦ are constructed likewise and have similar
(dual) properties.

Next we discuss the size of unstable manifolds. A point x ∈ M♦ divides
W u(x) into two segments, and we denote by ru(x) the length (in the Eu-
clidean metric) of the shorter one. If W u(x) is empty, then we put ru(x) = 0.

Theorem 5.1. W u(x) exists (i.e. ru(x) > 0) for almost every x ∈ M♦.
Furthermore,

(5.2) µ♦{x ∈ M♦ : ru(x) < ε} ≤ Cε

for some constant C = C(D) > 0 and all ε > 0.

Proof. For every point x ∈ M♦, denote by du(x; Ŝ1) the length of the shortest
unstable curve that connects x with the set Ŝ1.

First, we define a piecewise constant function E(x) on M♦ as follows: at
a first sliding collision in a series of length k we set E(x) = k and at a last
collision in that series we set E(x) =

√
k; at a collision before a long series of

k diametrical reflections at the large arc set E(x) = k; at a collision before a
long series of k reflections at the flat sides E(x) = k. It follows from Section
3 that there exists c > 0, such that for any v at x

‖DxF♦v‖ ≥ cE(x)‖v‖.
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Furthermore, since F♦ : M♦ 7→ M♦ is uniformly hyperbolic, there exist
c̄ > 0 and Λ > 1, such that for any x ∈ M♦ and any unstable vector v at x

‖DxFn
♦v‖ ≥ c̄Λn‖v‖.PSfrag replacements

C

C

E
1
k

1
k

1
k1

k

1
k

1
k1

k

1
k

1
k

(a) (b) (c)

Figure 7: Singularity curves: (a) type N1, (b) type N2, (c) type N3.

Thus one can show that

ru(x) ≥ min
m≥1

cE
(

F−m
♦ x

)

c̄Λm−1du
(

F−m
♦ x, Ŝ1

)

.

Choose any Λ̂ ∈ (1, Λ), and define

r∗(x) = min
m≥1

cE
(

F−m
♦ x

)

c̄Λ̂m−1du
(

F−m
♦ x, Ŝ1

)

.

Clearly, ru(x) ≥ r∗(x). Denote

Ũu
ε (Ŝ1) = {x ∈ M♦ : E(x) du(x, Ŝ1) < ε}

Next we will prove that

(5.3) µ♦

(

Ũu
ε (Ŝ1)

)

< Cε,

which requires a detailed analysis of singularities in the vicinities of the
points where the singularity lines accumulate, i.e. the points E, B, C, D in
the hexagon shown in Fig. 4. A close-up of the vicinities of points E and C
is shown in Fig. 7; the picture near points B and D is symmetric. Points
of first collisions in long series of k non-essential collisions (of type N1, N2
and N3) fill a grey quadrilateral near E (or C). All gray quadrilateral have
dimensions k−1 × k−2.
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The straight stadium has collisions of type N1 and N2 only. The intersec-
tion of Ũu

ε with the quadrilateral in (a) lies within the (ck−1/2ε)-neighborhood
of its boundary, and the intersection of Ũu

ε with the quadrilateral in (b) lies
within the (ck−1ε)-neighborhood of its boundary, where c > 0 is a constant.
Now

(5.4) µ♦

(

Ũu
ε (Ŝ1)

)

< c
∑

k

k−5/2ε + c
∑

k

k−2ε < Cε

for some constants c, C > 0 (note that the extra factor k−1 is included here
due to the density cos ϕ � 1/k of the measure µ♦). The drive-belt table has
collisions of type N2 and N3 only, but the proof of (5.3) follows the same
lines. Denote

Dn = Fn
♦

(

Ũu
cΛ̂−n(Ŝ1)

)

= {x ∈ M♦ : E(F−n
♦ x)du(F−n

♦ (x), Ŝ1) < cΛ̂−n}.

Then by the invariance of the measure µ♦ and (5.3)

µ♦(Dn) = µ♦

(

Ũu
cΛ̂−n(Ŝ1)

)

≤ CΛ̂−n.

By the Borel-Cantelli lemma, the set B = ∩∞
m=1 ∪n≥m Dn has zero measure,

i.e. µ♦(B) = 0. On the other hand, B consists of points x ∈ M♦, such that
r∗(x) = 0. Thus for µ♦-almost every x ∈ M♦, r∗(x) 6= 0. To prove (5.2), it
is enough to show that

µ♦

(

x ∈ M♦ : r∗(x) < ε
)

< Cε.

Notice that

{x ∈ M♦ : r∗(x) < ε} = ∪∞
m=1Ũu

(cc̄)−1Λ̂−mε
(Ŝ1),

now (5.3) implies the result.

Remark 5.2. We can prove a linear tail bound similar to (5.2) for the p-
metric:

µ♦{x ∈ M♦ : pu(x) < ε} ≤ Cε

where pu(x) is the distance in the p-metric from x to the nearer endpoint of
W u(x).
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In fact we can define the function E(x) as above. Then put

Ũu
p,ε(Ŝ1) = {x ∈ M♦ : E(x) du

p(x, Ŝ1) < ε}

where du
p(x, Ŝ1) denotes the length (in the p-metric) of the shortest unstable

curve that connects x with the set Ŝ1. Lastly we show that µ♦

(

Ũu
p,ε(Ŝ1)

)

<
Cε. Note that (5.4) needs to be modified only slightly:

µ♦

(

Ũu
p,ε(Ŝ1)

)

< c
∑

k

k−3/2ε + c
∑

k

k−2ε < Cε.

Lemma 5.3. Let W ⊂ M♦ be an unstable curve on which F♦ is smooth.
Then |F♦(W )| ≤ C

√

|W |, where C = C(D) > 0 is a constant and |W |
denotes the Euclidean length of W .

Proof. We denote by x = (r, ϕ) points on the curve W and by x1 = (r1, ϕ1)
points on its image F♦(W ). The claim is trivial unless τ is large or cos ϕ1 ≈ 0
(cf. (3.15)). If τ is large, then the unstable curve W must ‘squeeze’ between
two singularity lines which are ∼ 1/τ 2 apart, cf. the end of Section 2, hence
|W | = O(τ 2), hence |F♦(W )| = O(τ |W |) = O(

√

|W |). If cos ϕ1 ≈ 0, there
are two cases to consider. First, if W consists of first collisions in a long
series of k sliding collisions, then |W | ≤ const · k−2; hence

|F♦(W )| � k|W | ≤ const · |W |1/2.

The more difficult case is where W consists of last collisions in a long series
of k sliding collisions. Then F♦(W ) consists of first collisions of the next
sliding series (on the opposite arc); thus ‖dx1‖ � dr1 � dϕ1 on F♦(W ).
We introduce a new variable s = cos ϕ1 on F♦(W ) and denote by smin and
smax its extreme values on that curve. Then ‖dx1‖ � ds on F♦(W ) and
|F♦(W )| � smax − smin. Denote by ‖dx1‖/‖dx‖ � s the (local) factor of
contraction of the curve F♦(W ) under the map F−1

♦ ; cf. (3.15). Now

|W | =

∫

W

‖dx‖ �
∫

F♦(W )

s ‖dx1‖ �
∫ smax

smin

s ds � s2
max − s2

min.

Now the lemma follows from the obvious: (smax − smin)
2 ≤ s2

max − s2
min.

Remark 5.4. Observe that if a sequence of unstable manifolds {W u
i } con-

verges, as i → ∞, to a curve W (in the C0 metric), then W (taken without its
endpoints) is an unstable manifold itself. Furthermore, for µ♦-almost every
x ∈ M♦ both endpoints of W u(x) belong to Ŝ−∞.
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We have constructed and described stable and unstable manifolds for
the return map F♦ : M♦ → M♦. Of course, they coincide with stable and
unstable manifolds for the original map F on M♦ as well. By iterating them
under the map F into the area M\M♦ we readily obtain stable and unstable
manifolds for the map F in the entire collision space M.

6 u-SRB densities and distortion bounds

In the previous section we constructed the maximal unstable manifold W u(x)
for almost every point x ∈ M♦. We note that W u(x) does not include its
end points, hence for any x, y ∈ M♦ the manifolds W u(x) and W u(y) either
coincide or are disjoint. Let ξu denote the partition of M♦ into maximal
unstable manifolds. Precisely, for every point x ∈ M♦ we put ξu

x = W u(x),
if the latter is not empty, and ξu

x = {x} otherwise. Note that if y is an
endpoint of W u(x), then W u(y) = ∅, hence ξu

y = {y}. Similarly, we can
define ξs. Both partitions are measurable, see [CM, Section 5.1], hence the
invariant measure µ induces conditional (probability) measure, νW u(x) (or
νW s(x)), on a.e. W u(x) (or W s(x)), see necessary definitions and facts about
measurable partitions and conditional distributions in [CM, Appendix A].

It is standard [CM, Section 5.2] that νW u(x) are absolutely continuous and
their densities ρW (u-SRB densities) satisfy a fundamental formula:

(6.1)
ρW (y)

ρW (z)
= lim

n→∞

JWF−n
♦ (y)

JWF−n
♦ (z)

for all y, z ∈ W . Here JWF−n
♦ (x) = ‖DxF−n

♦ w‖/‖w‖, where w is a nonzero
tangent vector to W at the point x.

Proposition 6.1. Let r∗(x) > 0 (in the notation of the previous section).
Then the limit (6.1) is finite for all y, z ∈ W u(x), hence ρW u(x) exists.

Proof. First, taking the logarithm and using the chain rule reduce this prob-
lem to the convergence of the series

(6.2)
∞

∑

n=0

(

lnJWnF−1
♦ (yn) − lnJWnF−1

♦ (zn)
)

,

where Wn = F−n
♦ (W ) and yn = F−n

♦ (y) (the same for zn). We pick x ∈ W
and denote xn = F−n

♦ (x), τn = τ(xn), and Bn,Kn, etc. are taken at the point
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xn. Then

JWnF−1
♦ (xn) =

‖dxn+1‖
‖dxn‖

=
1

|1 + τn+1 B+
n+1|

cos ϕn

cos ϕn+1

√

1 + V2
n+1

√

1 + V2
n

Therefore

lnJWnF−1
♦ (xn) = ln cos ϕn − ln cos ϕn+1 + 1

2
ln(1 + V2

n+1) − 1
2
ln(1 + V2

n)

− ln
∣

∣1 + τn+1B+
n+1

∣

∣.(6.3)

And again, due to the uniform hyperbolicity of F♦, dist(yn, zn) ≤ diam(Wn) ≤
ĈΛ−n. We obtain

∣

∣lnJWnF−1
♦ (yn) − lnJWnF−1

♦ (zn)
∣

∣ ≤ ĈΛ−n max
∣

∣

∣

d

dxn
lnJWnF−1

♦ (xn)
∣

∣

∣

where the maximum is taken over all xn ∈ Wn and d/dxn denotes the deriva-
tive with respect to the Euclidean length on Wn.

Next we differentiate (6.3) with respect to xn. Observe, however, that
(6.3) contains functions that depend on xn+1, but those can be handled by
the chain rule

d

dxn
=

dxn+1

dxn

d

dxn+1
= JWnF−1

♦ (xn)
d

dxn+1

(note also that the factor JWnF−1
♦ (xn) is uniformly bounded.) Our results in

the previous section imply that the quantities τ, ϕ,B− and V are C1 smooth
functions on unstable manifolds, with uniformly bounded derivatives. Also,
all the expressions on the right-hand side of (6.3), except the first and last
logarithmic terms, are uniformly bounded (since cos ϕ may be small and the
free path τ is not bounded from above).

Applying Lemma 3.1 to the last collision xn of a series of collisions at the

same arc and noticing that
∣

∣1 + τn+1B+
n+1

∣

∣ =
∣

∣1 − τn+1B−
n

∣

∣

−1
we obtain

d

dxn
ln

∣

∣1 − τn+1B−
n

∣

∣ =

∣

∣

dτn+1

dxn
B−

n + τn
dB−

n

dxn

∣

∣

∣

∣1 − τn+1B−
n

∣

∣

=
‖dxn+1‖p

‖dxn‖p

∣

∣

∣

∣

dτn+1

dxn
B−

n + τn
dB−

n

dxn

∣

∣

∣

∣

.(6.4)
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By our results in Section 3, we know that

‖dxn+1‖p

‖dxn‖p

≤ 1

2kr
<

1

2kr cosϕn

=
1

τn

,

thus we arrive at

(6.5)
d

dxn
lnJWnF−1

♦ (xn) = Pn(xn) +
|Vn|

cos ϕn
Qn(xn)

where Pn and Qn are uniformly bounded functions of xn. Now

(6.6)
∣

∣lnJWnF−1
♦ (yn) − lnJWnF−1

♦ (zn)
∣

∣ ≤ const · Λ−n

minx cos ϕn

where the minimum is taken over all x ∈ W .
To deal with the potentially small denominator here, we use our assump-

tion that r∗(x) > 0 for some point x ∈ W (and hence, for all points x ∈ W ,
see the proof of Proposition 5.9). We also restrict our analysis to the seg-
ment W [y; z] ⊂ W of the curve W with endpoints y and z. Then we have
du(F−nx,S1) ≥ Λ̂−n, hence cos ϕn > cΛ̂−n for all n ≥ 1 and all x ∈ W [y, z]
with some c = c(y, z) > 0. We also recall that Λ̂ < Λ, hence

min
x

cos ϕn > 1
2
cΛ̂−n.

Thus (6.2) converges exponentially, and the u-SRB density ρW exists.

Next we derive distortion bounds. Let W be an unstable curve such that
Wn = F−n

♦ (W ) is also an unstable curve for all 0 ≤ n ≤ N − 1. In addition,

we assume that W ∩ Ŝ1 = ∅. For every point x ∈ W we put xn = F−n
♦ (x)

and denote by JWF−n
♦ (x) the factor of contraction of W under the map F−n

♦

at x. The following holds:

Lemma 6.2. For every y, z ∈ W and every 1 ≤ n ≤ N we have

C−1
d ≤ e−C|W |1/2 ≤ JWF−n

♦ (y)

JWF−n
♦ (z)

≤ eC|W |1/2 ≤ Cd,

where C = C(D) > 0 and Cd = Cd(D) > 0 are constants.
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Proof. Taking the logarithm and using the chain rule give

∣

∣lnJWF−n
♦ (y) − lnJWF−n

♦ (z)
∣

∣ ≤
n−1
∑

i=0

∣

∣lnJWi
F−1

♦ (yi) − lnJWi
F−1

♦ (zi)
∣

∣

≤
n−1
∑

i=0

|Wi| max
∣

∣

∣

d

dxi
lnJWi

F−1
♦ (xi)

∣

∣

∣

≤ const

n−1
∑

i=0

|Wi|(1 + |Vi|/ cos ϕi)

where at the last step we used (6.5). Now we claim that

(6.7) |Wi| |Vi|/ cos ϕi ≤ const |Wi|1/2.

This is trivial unless cos ϕi is small, which happens only at first and last
collisions in long series of sliding collisions. At a first sliding collision |Wi| =
O(k−2), and cos ϕi � k−1 and |Vi| � 1 (here k is the number of collisions
in the series), which implies (6.7). At a last sliding collision |Wi| � k−1 and
cos ϕi � k−1, but we also have |Vi| � k−1 (see Table 1), which completes the
proof of (6.7). Hence

∣

∣lnJWF−n
♦ (y) − lnJWF−n

♦ (z)
∣

∣ ≤ const

n−1
∑

i=0

|Wi|1/2

≤ const |W |1/2,

where at the last step we used the uniform hyperbolicity of F♦. Now
Lemma 6.2 is proved.

Corollary 6.3. For every x ∈ W and every 1 ≤ n ≤ N

C−1
d ≤ JWF−n

♦ (x)

|Wn|/|W | ≤ Cd.

We remark that in dispersing billiards, in order to ensure distortion
bounds one needs to subdivide the collision space into countable many homo-
geneity strips [CM, Section 5.3]. Here we do not need those – our distortion
bounds hold for all unstable curves, provided they do not intersect Ŝ1. The
reason is that the singularity lines of Ŝ1 already divide the ‘hazardous’ area
where cos ϕ ≈ 0 into sufficiently narrow strips (see Fig. 7), which ensures the
homogeneity of unstable curves in each strip.
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Theorem 6.4 (Distortion bounds). For every unstable manifold W ⊂ M♦

that does not intersect Ŝ1

∣

∣

∣

d

dx
ln ρW (x)

∣

∣

∣
≤ C

|W |1/2
,

where C = C(D) > 0 is a constant.

Proof. We fix a point x̄ ∈ W . Then due to (6.1) and the chain rule

ln ρW (x) = ln ρW (x̄) +
∞

∑

n=0

(

lnJWnF−1
♦ (xn) − lnJWnF−1

♦ (x̄n)
)

;

hence

d

dx
ln ρW (x) =

∞
∑

n=0

d

dx
lnJWnF−1

♦ (xn)

=

∞
∑

n=0

dxn

dx

d

dxn
lnJWnF−1

♦ (xn)

=

∞
∑

n=0

JWF−n
♦ (x)

[

Pn(xn) +
|Vn|Qn(xn)

cos ϕn

]

,

where Pn and Qn are uniformly bounded functions of xn from (6.5). There-
fore,

∣

∣

∣

∣

d

dx
ln ρW (x)

∣

∣

∣

∣

≤ const

∞
∑

n=0

JWF−n
♦ (x)

[

1 + Vn/ cos ϕn

]

≤ const

∞
∑

n=0

|Wn|/|W |
|Wn|1/2

≤ const
∞

∑

n=0

Λ−n/2

|W |1/2

where we used (6.7), Corollary 6.3, and the uniform hyperbolicity of F♦; cf.
(3.14). Theorem 6.4 is proved.

Corollary 6.5. For every x, y ∈ W

C−1
d ≤ e−C|W |1/2 ≤ ρW (x)

ρW (y)
≤ eC|W |1/2 ≤ Cd,

where C = C(D) > 0 is a constant.
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Thus we derived all the basic distortion bounds for both stadia. We will
not estimate higher order derivatives here to avoid unnecessary complica-
tions.

7 Absolute continuity

Here we estimate the Jacobian of the holonomy map. Let W 1, W 2 ⊂ M♦ be
two unstable curves. Denote

W i
∗ = {x ∈ W i : W s(x) ∩ W 3−i 6= ∅}

for i = 1, 2. The holonomy map h : W 1
∗ → W 2

∗ takes points x ∈ W 1
∗ to

x̄ = W s(x)∩W 2. The Jacobian of h, with respect to the Lebesgue measures
on W 1 and W 2, satisfies a basic formula:

(7.1) Jh(x) = lim
n→∞

JW 1Fn
♦(x)

JW 2Fn
♦

(

h(x)
) .

While the general theory of hyperbolic maps [KS] guarantees that the Jaco-
bian is positive and finite for almost every point x ∈ W 1

∗ , it is important to
obtain explicit bounds on it.

We assume that W 1 and W 2 are C2 smooth curves with uniformly bounded
first and second derivatives (then their future images will have uniformly
bounded derivatives as well, due to Proposition 4.1).

Let x ∈ W 1
∗ and x̄ = h(x) ∈ W 2

∗ . We assume that the segment of W s(x)
between the points x and x̄ does not cross Ŝ−1 (in the case of dispersing
billiards, a stronger assumption – that of homogeneity of W s(x) – must
be made [CM, Chapter 5]). We put δ = dist(x, x̄) and denote by γ =
|V(x) − V(x̄)| the ‘angle’ between the tangent vectors to the curves W 1 and
W 2 at the points x and x̄, respectively.

Theorem 7.1. The Jacobian of the holonomy map h is uniformly bounded

C−1 ≤ Jh(x) ≤ C,

for all x ∈ W 1
∗ ; here C = C(D) > 1 is a constant. Moreover,

(7.2) A−γ−δ1/2 ≤ Jh(x) ≤ Aγ+δ1/2

,

where A = A(D) > 1 is a constant.
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Proof. Denote W i
n = Fn

♦(W i) for i = 1, 2 and n ≥ 1. Also denote xn = Fn
♦(x)

and x̄n = Fn
♦(x̄) and put δn = dist(xn, x̄n). Due to the uniform hyperbolicity

of F♦ (cf. (3.14)), δn ≤ ĈδΛ−n, where Ĉ = 1/ĉ.
Taking the logarithm of (7.1) and using the chain rule give

(7.3) ln Jh(x) =
∞

∑

n=0

(

lnJW 1
n
F♦(xn) − lnJW 2

n
F♦(x̄n)

)

.

Due to (3.13), (3.3), and (2.2)

JW 1
n
F♦(xn) = |1 + τnB+

n |
cos ϕn

cos ϕn+1

√

1 + V2
n+1

√

1 + V2
n

=

∣

∣cos ϕn + τn(Kn + Vn)
∣

∣

cos ϕn+1

√

1 + V2
n+1

√

1 + V2
n

,

where, as usual, τn = τ(xn), and Bn, Kn, etc., are taken at the point xn.
Therefore

lnJW 1
n
F♦(xn) = − ln cos ϕn+1 + 1

2
ln(1 + V2

n+1) − 1
2
ln(1 + V2

n)

+ ln
∣

∣cos ϕn + τn(Kn + Vn)
∣

∣.(7.4)

Using similar notation at x̄n we get

lnJW 2
n
F♦(x̄n) = − ln cos ϕ̄n+1 + 1

2
ln(1 + V̄2

n+1) − 1
2
ln(1 + V̄2

n)

+ ln
∣

∣cos ϕ̄n + τ̄n(Kn + V̄n)
∣

∣.(7.5)

(Note that Kn is the same at both points xn and x̄n.) Comparing the first
terms of the above expressions gives

∣

∣ln cos ϕn+1 − ln cos ϕ̄n+1

∣

∣ ≤ const |ϕn+1 − ϕ̄n+1|
cos ϕn+1

≤ const δ
1/2
n+1

where we used (6.7), more precisely, its ‘time reversal’ counterpart. All the
other terms in (7.4) and (7.5) are uniformly bounded and differentiable; thus
it easily follows that

(7.6)
∣

∣lnJW 1
n
F♦(xn) − lnJW 2

n
F♦(x̄n)

∣

∣ ≤ C
(

δ
1/2
n+1 + γn + γn+1 + δn

)
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where C > 0 is a constant and γn = |∆Vn| = |Vn − V̄n| stands for the ‘angle’
between the tangent vectors to the curves W 1

n and W 2
n at the points xn and

x̄n, respectively (note that γ0 = γ).
Due to Lemma 5.3 (more precisely, due to its ‘time reversal’ counterpart),

we have δn ≤ Cδ
1/2
n+1; thus the term δn in (7.6) may be dropped. It remains

to estimate γn for all n ≥ 0. For brevity, we denote ∆B−
n = B−

n − B̄−
n ,

∆τn = τn − τ̄n, etc. First we estimate ∆B−
n+1 by using (3.4):

∆B−
n+1 =

1

τn + 1/B+
n

− 1

τ̄n + 1/B̄+
n

= − 1

τn + 1/B+
n

1

τ̄n + 1/B̄+
n

(

∆τn +
1

B+
n

− 1

B̄+
n

)

= − ∆τn
(

τn + 1/B+
n

)(

τ̄n + 1/B̄+
n

) +
∆Rn + ∆B−

n
(

1 + τnB+
n

)(

1 + τ̄nB̄+
n

)(7.7)

(recall that B+
n = Rn + B−

n ).
Now the first term in (7.7) is bounded by

const ∆τn ≤ const(δn + δn+1) ≤ const δn.

Next,

∆Rn
(

1 + τnB+
n

)(

1 + τ̄nB̄+
n

) ≤ 2Kn cos ϕ̄n − 2Kn cos ϕn
(

cos ϕn + τn(Kn + Vn)
)(

cos ϕ̄n + τ̄n(Kn + V̄n)
) .

Since the denominator is bounded away from zero, due to (3.12), the absolute
value of the fraction is O(δn); thus (7.7) reduces to

∆B−
n+1 = Q̃(1)

n +
∆B−

n
(

1 + τnB+
n

)(

1 + τ̄nB̄+
n

) ,

where |Q̃(1)
n | ≤ const δn. Next, due to (2.2)

∆Vn+1 = B−
n+1 cos ϕn+1 − B̄−

n+1 cos ϕ̄n+1

= Q̃
(2)
n+1 + cos ϕn+1 ∆B−

n+1,

where |Q̃(2)
n+1| ≤ const δn+1. Combining the last two estimates gives

∆Vn+1 = Q̃(3)
n +

cos ϕn+1

cos ϕn

∆Vn
(

1 + τnB+
n

)(

1 + τ̄nB̄+
n

) ,

31



where |Q̃(3)
n | ≤ const δn. Now consider the fraction

un : =
cos ϕn+1

cos ϕn

(

1 + τnB+
n

)(

1 + τ̄nB̄+
n

) .

It is easy to verify that for all 0 ≤ k ≤ n

|unun−1 · · ·uk| ≤ C/Λn−k

where C = C(D) > 0 is a constant, and

γn = |∆Vn| ≤ const

( n
∑

k=0

δk/Λn−k + γ/Λn

)

≤ const
(

δn/Λn + γ/Λn
)

.(7.8)

Combining (7.8) with (7.6) yields

(7.9)
∣

∣

∣
lnJW 1

n
F♦(xn) − lnJW 2

n
F♦(x̄n)

∣

∣

∣
≤ C

(

δ1/2

Λn/3
+

δn

Λn
+

γ

Λn

)

,

where C = C(D) > 0 is a constant. Summing up over n gives

∣

∣lnJh(x)
∣

∣ ≤ const
(

γ + δ1/2
)

,

which completes the proof of the theorem.

The bound (7.2) can be improved to

A−δ1/2 ≤ Jh(x) ≤ Aδ1/2

if the curves W 1 and W 2 do not intersect and extend beyond the points x and
x̄ by at least the distance Dδ1/2, where D = D(D) > 0 is a large constant,
see [CM].

Lastly we show that the Jacobian Jh(x), as a function of x ∈ W 1
∗ is

‘dynamically Hölder continuous’. Let Qn(x) again denote the open connected
component of the set M♦ \ Ŝn containing the point x. For two points x, y ∈
M♦ denote by

(7.10) s+(x, y) = min{n ≥ 0: y /∈ Qn(x)}

the ‘separation time’.
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Proposition 7.2. There are constants C > 0 and θ ∈ (0, 1) such that

| lnJh(x) − ln Jh(y)| ≤ Cθ
s+(x,y).

Proof. Denote x̄ = h(x) and ȳ = h(y). Observe that s+(x̄, ȳ) = s+(x, y);
this follows from the continuation property of singularity lines (Section 4).
Using the notation of (7.3) and the triangle inequality gives

∆: = | lnJh(x) − lnJh(y)|

≤
∞

∑

n=0

| lnJW 1
n
F♦(xn) − lnJW 2

n
F♦(x̄n) − lnJW 1

n
F♦(yn) + lnJW 2

n
F♦(x̄n)|.

Let m = s+(x, y)/2. Then we apply the estimate (7.9) to all n > m and
Lemma 6.2 (on distortion bounds) to all n ≤ m. This proves our claim with
θ = Λ−1/4.

Acknowledgement. We thank P. Bálint and R. Markarian for useful dis-
cussions and anonymous referees for many helpful remarks. N. Chernov was
partially supported by NSF grant DMS-0354775. H.-K. Zhang was partially
supported by SRF for ROCS, SEM.

References
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Poincaré 2 (2001), 197–236.

[CM] N. Chernov and R. Markarian, Chaotic Billiards, Mathematical Sur-
veys and Monographs, 127, AMS, Providence, RI, 2006.

[CZ1] N. Chernov and H.-K. Zhang, Billiards with polynomial mixing
rates, Nonlinearity 18 (2005), 1527–1553.

[CZ2] N. Chernov and H.-K. Zhang, Optimal estimates for correlations in
billiards, Comm. Math. Phys. (to appear).

[D] V. Donnay, Using integrability to produce chaos: billiards with pos-
itive entropy, Comm. Math. Phys. 141 (1991), 225–257.

[FKCD] N. Friedman, A. Kaplan, D. Carasso, and N. Davidson, Observation
of Chaotic and Regular Dynamics in Atom-Optics Billiards, Phys.
Rev. Lett. 86 (2201), 1518–1521.

[KS] A. Katok and J.-M. Strelcyn, Invariant manifolds, entropy and bil-
liards; smooth maps with singularities, Lect. Notes Math., 1222,
Springer, New York (1986).

[KMS] S. Kerckhoff, H. Masur, and J. Smillie, Ergodicity of billiard flows
and quadratic differentials, Ann. Math. 124 (1986), 293–311.

[L] V. F. Lazutkin, On the existence of caustics for the billiard ball
problem in a convex domain, Math. USSR Izv. 7 (1973), 185–215.

[M] R. Markarian, Billiards with Pesin region of measure one, Comm.
Math. Phys. 118 (1988), 87–97.

34



[S] Ya. G. Sinai, Dynamical systems with elastic reflections. Ergodic
properties of dispersing billiards, Russ. Math. Surv. 25 (1970), 137–
189.

[Sz] D. Szász, On the K-property of some planar hyperbolic billiards,
Comm. Math. Phys. 145 (1992), 595–604.

[W] M. Wojtkowski, Principles for the design of billiards with nonvanish-
ing Lyapunov exponents, Comm. Math. Phys. 105 (1986), 391–414.

[Y] L.-S. Young, Statistical properties of dynamical systems with some
hyperbolicity, Ann. Math. 147 (1998), 585–650.

35


