Solution to Practice Final 3

1. a) $\overrightarrow{P Q}=\langle 2,-1,2\rangle-\langle 1,3,0\rangle=\langle 1,-4,2\rangle$ and $\overrightarrow{P R}=\langle 0,0,1\rangle-\langle 1,3,0\rangle=\langle-1,-3,1\rangle$. Thus, the normal vector to the plane is given by

$$
\mathbf{n}=\overrightarrow{P Q} \times \overrightarrow{P R}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & -4 & 2 \\
-1 & -3 & 1
\end{array}\right|=\langle 2,-3,-7\rangle
$$

and therefore the equation of the plane is given by $2(x-1)-3(y-3)-7 z=0$.
b) Substitute $\left\{\begin{array}{l}x=2 t^{2}-2 \\ y=t \\ z=1-t-t^{2}\end{array}\right.$ in $x+y+z=3$. Then, we have $t^{2}=4$, or $t= \pm 2$. Hence, the intersection points are $\left\{\begin{array}{l}(6,2,-5), \text { when } t=2 \\ (6,-2,-1), \text { when } t=-2 .\end{array}\right.$
2. By solving $\left\{\begin{array}{l}f_{x}(x, y)=2 x=0 \\ f_{y}(x, y)=4 y-2=0,\end{array} \quad\right.$ we obtain a crtical point $(0,1 / 2)$ in the disk, and $f(0,1 / 2)=-1 / 2$.

Now, use Lagrange multiplier to find the max/min values on the boundary $x^{2}+y^{2}=5$. We have to solve

$$
\left\{\begin{array}{l}
2 x=\lambda \cdot 2 x \\
4 y-2=\lambda \cdot 2 y .
\end{array}\right.
$$

From the first equation, we have $2 x(1-\lambda)=0$. Thus, $x=0$ or $\lambda=1$. If $x=0$, we have $0^{2}+y^{2}=5$, i.e. $y= \pm \sqrt{5}$ and we have

$$
\left\{\begin{array}{l}
f(0, \sqrt{5})=10-2 \sqrt{5} \simeq 5.53 \\
f(0,-\sqrt{5})=10+2 \sqrt{5} \simeq 14.47
\end{array}\right.
$$

If $\lambda=1$, from the second equation, we have $y=1$. Then, by solving $x^{2}+1^{2}=5$, we have $x= \pm 2$, and $f(\pm 2,1)=4$. Therefore, we have

$$
\left\{\begin{array}{l}
\text { abs } \max =10+2 \sqrt{5} \simeq 14.47 \text { at }(0,-\sqrt{5}) \\
\text { abs } \min =-1 / 2 \text { at }(0,1 / 2)
\end{array}\right.
$$

(Note that, for this particular problem, we can substitute $x^{2}=5-y^{2}$ in $f(x, y)$ and obtain $g(y)=y^{2}-2 y+5$ with $-\sqrt{5} \leq y \leq \sqrt{5}$. Then, we can obtain the max/min on the boundary by Calculus 1.)
3. $y=2 x$ and $y=x^{2}$ intersect at $(0,0)$ and $(2,4)$. Thus,

$$
\begin{aligned}
\iint_{R} x y d A & =\int_{0}^{2} \int_{x^{2}}^{2 x} x y d y d x=\left.\int_{0}^{2} \frac{x y^{2}}{2}\right|_{x^{2}} ^{2 x} d x \\
& =\int_{0}^{2}\left(2 x^{3}-\frac{x^{5}}{2}\right) d x=\frac{x^{4}}{2}-\left.\frac{x^{6}}{12}\right|_{0} ^{2} \simeq 2.67
\end{aligned}
$$

(Note that we can also compute $\int_{0}^{4} \int_{y / 2}^{\sqrt{y}} x y d x d y$.)
4. a) Let $\left\{\begin{array}{l}P(x, y)=2 x y+\sin y \\ Q(x, y)=x^{2}+x \cos y+1\end{array}\right.$. Then we have

$$
\frac{\partial P}{\partial y}=2 x+\cos y=\frac{\partial Q}{\partial x}
$$

Hence, \mathbf{F} is conservative and there exists a function $f(x, y)$ such that

$$
\left\{\begin{array}{l}
f_{x}(x, y)=P(x, y)=2 x y+\sin y \\
f_{y}(x, y)=Q(x, y)=x^{2}+x \cos y+1
\end{array}\right.
$$

By integrating the first in x, we have $f(x, y)=x^{2} y+x \sin y+g(y)$. Now, taking a partial derivative in y, we have $f_{y}(x, y)=x^{2}+x \cos y+g^{\prime}(y)=Q(x, y)=x^{2}+x \cos y+1$. i.e. $g^{\prime}(y)=1$. By integrating in y, we have $g(y)=y+C$.

Hence, we have found a potential function $f(x, y)=x^{2} y+x \sin y+y+C$, satisfying $\nabla f=\mathbf{F}$.
b) By the Fundamental Theorem of Calculus, we have

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C} \nabla f \cdot d \mathbf{r}=f(2,4)-f(0,0)=20+2 \sin 4 .
$$

5. We can parametrize C by $\mathbf{r}(t)=\langle\cos t, \sin t\rangle$ with $0 \leq t<2 \pi$. Then, we have

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{0}^{2 \pi} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t \\
& =\int_{0}^{2 \pi}\left\langle\sin ^{2} t+\sin (\cos t), \cos t \sin t\right\rangle \cdot\langle-\sin t, \cos t\rangle d t \\
& =\int_{0}^{2 \pi}\left(-\sin ^{3} t-\sin (\cos t) \sin t+\cos ^{2} t \sin t\right) d t
\end{aligned}
$$

With $-\sin ^{2} t=\cos ^{2} t-1$, we have

$$
\begin{aligned}
& =\int_{0}^{2 \pi}\left(-\sin t-\sin (\cos t) \sin t+2 \cos ^{2} t \sin t\right) d t \\
& =\cos t-\cos (\cos t)-\left.\frac{2}{3} \cos ^{3} t\right|_{0} ^{2 \pi}=0
\end{aligned}
$$

(For the second and the third integrations, substitution was performed with $u=\cos t$.)
Note that we can also use Green's Theorem for this problem. Let D denote the unit disk. Then, we have

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot d \mathbf{r} & =\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A \\
& =\iint_{D}(-y) d A=0
\end{aligned}
$$

The last equality holds because the region D is symmetric in the y direction (and the integrand is just $-y$, an odd function.) Or just compute

$$
\iint_{D}(-y) d A=\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}}(-y) d y d x=0
$$

6. Let C_{1} be the (directed) line segment from $(0,0)$ to $(2,1)$ and C_{2} be the (directed) line segment from $(2,1)$ to $(0,3)$. Then, we have

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}+\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r} .
$$

Now, C_{1} can be parametrized by $\mathbf{r}(t)=\langle 2 t, t\rangle$ for $0 \leq t \leq 1$. Then, we have

$$
\begin{aligned}
\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r} & =\int_{0}^{1}\left\langle t^{2}, 2(2 t) t+2 t\right\rangle \cdot\langle 2,1\rangle d t=\int_{0}^{1}\left(6 t^{2}+2 t\right) d t \\
& =2 t^{3}+\left.t^{2}\right|_{0} ^{1}=3
\end{aligned}
$$

On the other hand, C_{2} is along the line $y=-x+3$. Thus, C_{2} can be parametrized by $\mathbf{r}(t)=\langle t,-t+3\rangle$ for $2 \geq t \geq 0$. Then, we have

$$
\begin{aligned}
\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r} & =\int_{2}^{0}\left\langle(-t+3)^{2}, 2 t(-t+3)+t\right\rangle \cdot\langle 1,-1\rangle d t=\int_{2}^{0}\left(3 t^{2}-13 t+9\right) d t \\
& =t^{3}-13 \frac{t^{2}}{2}+\left.9 t\right|_{2} ^{0}=0
\end{aligned}
$$

Therefore, we have

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=3
$$

