Solution to Practice Final 3

1. a) PO = (2,—-1,2) — (1,3,0) = (1,—4,2) and PR = (0,0,1) — (1,3,0) = (—1,—3,1).
Thus, the normal vector to the plane is given by

i j k
— =
n=PQxPR=| 1 —4 2|=(2-3-7)
-1 -3 1
and therefore the equation of the plane is given by 2(z — 1) — 3(y — 3) — 72 = 0.
x=2t2—-2
b) Substitute ¢ y =t in x +y+ 2 = 3. Then, we have t> = 4, or t = £2. Hence,
z=1—1t—t

(6,2, —5), when t = 2
(6,—2,—1), when t = —2.
fe(z,y) =22 =0
fylz,y) =4y —2=0,
£(0,1/2) = —1/2.

Now, use Lagrange multiplier to find the max/min values on the boundary z? + 3? = 5.

We have to solve
20 = \-2x
4y —2 = \-2y.

From the first equation, we have 2x(1 — A) = 0. Thus, z = 0 or A = 1. If z = 0, we have
02 4+y% =5, ie. y = £/5 and we have

{ﬂav®=40—2¢5:5m

the intersection points are {

2. By solving we obtain a crtical point (0,1/2) in the disk, and

£(0,—v/5) = 10 + 2/5 ~ 14.47

If A = 1, from the second equation, we have y = 1. Then, by solving 2% 4+ 12 = 5, we have
x =42, and f(£2,1) = 4. Therefore, we have

abs max = 10 + 2v/5 ~ 14.47 at (0, —\/3)
abs min = —1/2 at (0,1/2).

(Note that, for this particular problem, we can substitute 22 =5 — y* in f(z,y) and obtain
g(y) = y* —2y+5 with —/5 <y < v/5. Then, we can obtain the max/min on the boundary
by Calculus 1.)



3. y =2z and y = z? intersect at (0,0) and (2,4). Thus,

bU@M,//‘w@M_/—j

2x

( Note that we can also compute fo f xy dx dy.)

P =2 i
4. a) Let (2,y) = 22y +siny . Then we have
Q(z,y) = 2% +wcosy + 1

—2x—|—cosy—a—Q
X
(

Hence, F is conservative and there exists a function f(z,y) such that

fo(z,9)
fy(xa y)
By integrating the first in x, we have f(z,y) = z*y+zsiny+ g(y). Now, taking a partial
derivative in y, we have f,(z,y) = 2* + zcosy + ¢'(y) = Q(z,y) = 2* + xcosy + 1. ie.
¢'(y) = 1. By integrating in y, we have g(y) =y + C.
Hence, we have found a potential function f(z,y) = 2%y + xsiny + y + C, satisfying
Vf=F.

b) By the Fundamental Theorem of Calculus, we have

P(z,y) = 2zy + siny
Q(z,y) =2* + xcosy + 1

/ F-dr= / Vf-dr=f(2,4)— f(0,0) = 20 + 2sin4.
c c
5. We can parametrize C' by r(t) = (cost,sint) with 0 <t < 27. Then, we have
2m
% F.dr — / F(e()) - x/(t) dt
c 0
27
= / (sin?t + sin(cost), costsint) - (—sint, cost) dt
0
2m
= / (—sin® ¢ — sin(cost)sint + cos® tsint) dt
0
With —sin?t = cos?t — 1, we have
2m
= / (—sint —sin(cost) sint + 2 cos tsint) dt
0
2m

— cost — _ 20t —
= cost — cos(cost) 5 €08 t| =0.
0



(For the second and the third integrations, substitution was performed with u = cost.)
Note that we can also use Green’s Theorem for this problem. Let D denote the unit disk.

Then, we have
0Q 0P
o (-5
j{C p\Odr Oy

[ cona-

The last equality holds because the region D is symmetric in the y direction (and the
integrand is just —y, an odd function.) Or just compute

[ - // y) dydz = 0.

6. Let C be the (directed) line segment from (0,0) to (2,1) and Cy be the (directed) line
segment from (2,1) to (0,3). Then, we have

/F-dr:/ F-dr+/ F - dr.
C (o] Ca

Now, C; can be parametrized by r(t) = (2t,t) for 0 < ¢ < 1. Then, we have

1 1
/ F-dr:/ ({2, 2(2t)t + 2t) - (2, 1) dt:/ (6¢% + 2t) dt
Cq 0 0
1

= 3.
0

= 2% + ¢

On the other hand, Cj is along the line y = —x + 3. Thus, C5 can be parametrized by
r(t) = (t,—t +3) for 2 >t > 0. Then, we have

/@F-dr:/2 (=t+3)%,2t(—t+3)+1)-(1,—1) dt:/2 (3t* — 13t +9) dt

0
=0.

2
/F-dr:3.
c

2

t
=3 —13=—+0t
2+

Therefore, we have



