Sketch of Solutions to Some Problems in Practice Final 1 \& 2

Exam 1

1. Double integral. See no. 3 in Practice Exam 3.
2. Line integral. See no. 6 in Practice Exam 3.
3. Using the Polar coordinates, we have

$$
R=\left\{(r, \theta): 1<r<\sqrt{2}, 0<\theta<\frac{\pi}{4}\right\} .
$$

Then, we have (recall $y=r \sin \theta$ and $r^{2}=x^{2}+y^{2}$.)

$$
\iint_{R} y \sqrt{x^{2}+y^{2}} d A=\int_{0}^{\pi / 4} \int_{1}^{\sqrt{2}} r \sin \theta \sqrt{r^{2}} r d r d \theta=\left(-\left.\cos \theta\right|_{0} ^{\pi / 4}\right)\left(\left.\frac{r^{4}}{4}\right|_{1} ^{\sqrt{2}}\right)
$$

4. Conservative vector field, finding its potential, the Fundamental Theorem of Calculus. See no. 4 in Practice Exam 3.
5. a) The normal vector to the level surface at $(1,1,-1)$ is given by

$$
\left.\nabla f(x, y, z)\right|_{(1,1,-1)}=\left.\left\langle 6 x+y z, x z, x y+3 z^{2}\right\rangle\right|_{(1,1,-1)}=\langle 5,-1,4\rangle
$$

Thus, the equation of the tangent plane to the level surface at $(1,1,-1)$ is given by

$$
5(x-1)-(y-1)+4(z+1)=0
$$

b) We have

$$
\left.\mathbf{r}^{\prime}(t)\right|_{t=1}=\left.\left\langle 4 t-1,-2 t^{-3}, 2 t-6 t\right\rangle\right|_{t=1}=\langle 3,-2,-4\rangle
$$

The unit vector \vec{u} pointing in the same direction is given by $\vec{u}=\frac{1}{\sqrt{29}}\langle 3,-2,-4\rangle$. Then, we have

$$
\mathrm{D}_{\vec{u}} f(1,1,-1)=\nabla f(1,1,-1) \cdot \vec{u}=\langle 5,-1,4\rangle \cdot \frac{1}{\sqrt{29}}\langle 3,-2,-4\rangle
$$

6. We have

$$
\left\{\begin{array}{l}
f_{x}(x, y)=2 x-2 y=0 \\
f_{y}(x, y)=-2 x+4 y-2=0
\end{array}\right.
$$

From the first equation, we have $x=y$. Substituting $x=y$ in the second, we have $y=1$ and thus $x=y=1$. And, we have $f(1,1)=-1$.

Now, divide the boundary into 3 line segments, l_{1}, l_{2}, l_{3}, where l_{1} is the part of the x-axis, l_{2} is the part of the y-axis, and l_{3} is the part of the $x+y=7$.

On l_{1} (i.e. $y=0$ and $0 \leq x \leq 7$), we have $f(x, 0)=x^{2}$. Thus, we have $\max =49$ at $(7,0)$ and $\min =0$ at $(0,0)$.

On l_{2} (i.e. $x=0$ and $0 \leq y \leq 7$), we have $g(y)=f(0, y)=2 y^{2}-2 y$. Since $g^{\prime}(y)=4 y-2=0$ gives $y=1 / 2$, we have max $=84$ at $(0,7)$ and $\min =-1 / 2$ at $(0,1 / 2) .(f(0,0)=0$ and this is neither max nor min. $)$

On l_{3} (i.e. $x=7-y$ with $0 \leq y \leq 7$), we have $g(y)=f(7-y, y)=5 y^{2}-$ $30 y+49$. Since $g^{\prime}(y)=10 y-30=0$ gives $y=3$, we have $\max =84$ at $(0,7)$ and $\min =4$ at $(4,3) .(f(0,7)=49$ and this is neither max nor min. $)$

Hence, abs max $=84$ at $(7,0)$ and abs $\min =-1$ at $(1,1)$.

Exam 2

1. a) We have $\left.\nabla f(x, y)\right|_{(1,0)}=\left.\left\langle e^{x y}+x y e^{x y}, x^{2} e^{x y}\right\rangle\right|_{(1,0)}=\langle 1,1\rangle$.

Since the direction is given by $\langle 3,2\rangle-\langle 1,0\rangle=\langle 2,2\rangle$, the unit vector in the same direction is given by $\vec{u}=\frac{1}{\sqrt{8}}\langle 2,2\rangle$ Hence, we have

$$
\mathrm{D}_{\vec{u}} f(1,0)=\langle 1,1\rangle \cdot \frac{1}{\sqrt{8}}\langle 2,2\rangle .
$$

b) Let $\vec{u}=\langle a, b\rangle$ with $a^{2}+b^{2}=1$. Since $0=\mathrm{D}_{\vec{u}} f(1,0)=\langle 1,1\rangle \cdot\langle a, b\rangle=a+b$, we have $2 a^{2}=1$. Hence $\vec{u}=\left\langle \pm \frac{1}{\sqrt{2}}, \mp \frac{1}{\sqrt{2}}\right\rangle$.
2. a) Let C be the counterclockwise unit circle, and D be the unit disk. Then, by Green's theorem, the work is given by

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot d \mathbf{r} & =\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A=\iint_{D} 2 d A \\
& =2 \cdot(\text { Area of the unit disk })=2 \pi
\end{aligned}
$$

b) By Greene's theorem, we have

$$
\begin{aligned}
\oint_{C}\left(-y^{2}\right) d x+x y d y & =\int_{0}^{1} \int_{0}^{1}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y=\int_{0}^{1} \int_{0}^{1} 3 y d x d y \\
& =\left(\left.x\right|_{0} ^{1}\right)\left(\left.\frac{3}{2} y^{2}\right|_{0} ^{1}\right)
\end{aligned}
$$

3. Conservative vector field, finding its potential, the Fundamental Theorem of Calculus. See no. 4 in Practice Exam 3.
4.

a) Equation of the tangent plane to a level surface at a given point. See no. 5 in Practice Exam 1.
b) The direction vector is given by $\nabla F(1,2,-2 \sqrt{5})$, where $F(x, y, z)=x^{2}+$ $y^{2}-\frac{1}{4} z^{2}$. Then, the equation of the normal line is given by

$$
\mathbf{r}(t)=\langle 1,2,-2 \sqrt{5}\rangle+t \cdot \nabla F(1,2,-2 \sqrt{5})
$$

5. $\left\{\begin{array}{l}\text { Inside: finding critical points and evaluating the function at those points } \\ \text { On the boundary: Lagrange multiplier. }\end{array}\right.$ See no. 2 in Practice Exam 3.
6. Integrating $\mathbf{a}(t)$, we have $\mathbf{v}(t)=\left\langle-3 \sin t+C_{1}, 3 \cos t+C_{2}, 2 t+C_{3}\right\rangle$. By evaluating at $t=0$, we have $\langle 0,3,0\rangle=\mathbf{v}(0)=\left\langle C_{1}, 3+C_{2}, C_{3}\right\rangle$ i.e. $C_{1}=C_{2}=C_{3}=0$.
If $\mathbf{v}(t)$ is perpendicular to $\mathbf{a}(t)$, then we have $\mathbf{v}(t) \cdot \mathbf{a}(t)=0$.

$$
\text { i.e. } \mathbf{v}(t) \cdot \mathbf{a}(t)=9 \sin t \cos t-9 \cos t \sin t+4 t=4 t=0
$$

Therefore, $t=0$.
7. The direction vector \mathbf{v} of the line is given by

$$
\mathbf{v}=\langle 3,-6,-2\rangle \times\langle 2,1,-2\rangle=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
3 & -6 & -2 \\
2 & 1 & -2
\end{array}\right|=\langle 14,2,15\rangle
$$

Now, to find a point on the line of the intersection of the two planes, substitute $z=0$. Then, we have

$$
\left\{\begin{array}{l}
3 x-6 y=15 \\
2 x+y=5
\end{array}\right.
$$

By sloving, we obtain $(3,-1,0)$. Hence the equation of the line is given by

$$
\mathbf{r}(t)=\langle 3,-1,0\rangle+t\langle 14,2,15\rangle
$$

