
1. The line L through the points A and B is parallel to the vector−−→
AB = 〈3, 2,−1〉 and has parametric equations x = 3t + 2, y = 2t + 1,
z = −t − 1. Therefore, the intersection point of the line with the plane
should satisfy:

2(3t + 2)− 3(2t + 1) + 4(−t− 1) = 13.

Solving the last equation with respect to the parameter t, we obtain t = −4
and the coordinates of the intersection point are

(3(−4) + 2, 2(−4) + 1,−(−4)− 1) = (−10,−7, 3).

2. (a) The curves meet at the point C if and only if components of the
vectors r1(t) and r2(t) coincide, i.e.

t = 3− s,

1− t = s− 2,

3 + t2 = s2.

From the first and last equations, we have 3 + (3− s)2 = s2, solving which
we obtain s = 2. Now from the first equation t = 1 which also satisfy the
second equation. The conclusion is that the point (1, 0, 4) is the point of
intersection of the curves.

(b) Let’s find the tangent vectors of the curves: for C1 the tangent vector
is r′(t) = 〈1,−1, 2t〉 and for the curve C2 the tangent vector is r′(s) =
〈−1, 1, 2s〉. At the intersection of C1 and C2 one has t = 1 and s = 2, so
L1 is parallel to the vector 〈1,−1, 2〉 and L2 is parallel to r′(s) = 〈−1, 1, 4〉.
Since both lines contain the point (1, 0, 4), the equations of the lines are

L1 : x = t + 1, y = −t, z = 2t + 4,

and

L2 : x = −s + 1, y = s, z = 4s + 4.

3. Suppose that C has coordinates (x, y, z). Then from the vector equality
−→
AC =

−−→
BD, one has

〈x− 2, y − 5, z − 1〉 = 〈5− 3, 2− 1,−3− 4〉,
and x = 4, y = 6, z = −6.

4. (a) Since
−−→
AB = 〈−1,−1, 2〉 and

−→
AC = 〈−2, 1, 1〉, the scalar projection

of
−→
AC onto

−−→
AB is

comp−→
AB

−→
AC =

−−→
AB ·

−→
AC

|
−−→
AB|

=
(−1)(−2) + (−1)(1) + 2(1)√

(−1)2 + (−1)2 + 22
=

3√
6

Therefore, the vector projection is this scalar projection times the unit vector
in the direction of

−−→
AB:

proj−→
AB

−→
AC =

3√
6

−−→
AB

|
−−→
AB|

=
1
2
−−→
AB = 〈−1/2,−1/2, 1〉
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(b) The area S of the triangle ABC is the half of the area of the paral-
lelogram with adjacent sides AB and AC which is the length of the cross
product:

S =
1
2
|
−−→
AB ×

−→
AC| = 1

2
|〈−3,−3,−3〉| = 3

√
3

2

(c) The line L containing A(2, 1, 0) and parallel to the vector
−−→
AB =

〈−1,−1, 2〉 has parametric equations

x = −t + 2, y = −t + 1, z = 2t

The square of the distance from the arbitrary point D on the line to the
point C is a function depending on the parameter t:

F (t) = |
−−→
CD|2 = (−t + 2)2 + (−t− 1)2 + (2t− 1)2 = 6t2 − 6t + 6

To minimize the distance, set d
dt F (t) = 0, and solve for t to obtain t = 1/2.

Hence, the required distance from the point C to the line L is d = F (1/2) =
9/2.

5. First, note that any direction vector of the line L is perpendicular
both of the normal vectors n1 = (1,−2, 1) and n2 = (2, 1, 1). Hence, L is
parallel to the vector

v = n1 × n2 = (−3, 1, 5)

Now, it is sufficient to find any point on L, i.e. a point satisfying x−2y+z = 1
and 2x + y + z = 1. Let, for example, x = 0. Then, solving the system of
equations −2y + z = 1 and y + z = 1, we obtain solutions y = 0 and z = 1,
so the point (0, 0, 1) is on the line and the parametric equations of L are

x = −3t, y = t, z = 5t + 1

6. The line L1 is parallel to the vector

v1 = 〈−1− 1, 4− 0, 1− 1〉 = 2 · 〈−1, 2, 0〉,

and L2 is parallel to the vector

v2 = 〈4− 2, 4− 3,−3− (−1)〉 = 〈2, 1,−2〉

We see that the lines L1 and L2 are not parallel to each other, because the
vectors v1 and v2 are not proportional: there is no such a k 6= 0 so that
v1 = k ·v2 (one can also check that v1×v2 6= 0). The parametric equations
of L1 through (1, 0, 1) are

x = −t + 1, y = 2t, z = 1

and the line L2 containing (2, 3,−1) has parametric equations

x = 2s + 2, y = s + 3, z = −2s− 1



To find intersection point of L1 and L2, we should find values of t and s
such that

−t + 1 = 2s + 2,

2t = s + 3,

1 = −2s− 1

Solving the last two equations, we get t = 1 and s = −1 which satisfy the
first equation. Therefore, the lines L1 and L2 intersect at the point (0, 2, 1).

7. (a) First, compute the components of the vectors
−−→
AB,

−→
AC, and

−−→
AD:

−−→
AB = 〈3− 1, 1− 4,−2− 2〉 = 〈2,−3,−4〉
−→
AC = 〈4− 1, 3− 4,−3− 2〉 = 〈3,−1,−5〉
−−→
AD = 〈1− 1, 0− 4,−1− 2〉 = 〈0,−4,−3〉.

The volume V of the parallelepiped is the absolute value of the scalar triple
product

−−→
AB · (

−→
AC ×

−−→
AB) =

∣∣∣∣∣∣
2 −3 −4
3 −1 −5
0 −4 −3

∣∣∣∣∣∣ = −13

and V is equal to 13.
(b) The equation of the plane through A, B, and D is given by the

determinant∣∣∣∣∣∣
x− 1 y − 4 z − 2
3− 1 1− 4 −2− 2
1− 1 0− 4 −1− 2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
x− 1 y − 4 z − 2

2 −3 −4
0 −4 −3

∣∣∣∣∣∣ = 0,

or −7x + 6y − 8z = 1.
(c) The plane through A, B, and C is∣∣∣∣∣∣

x− 1 y − 4 z − 2
3− 1 1− 4 −2− 2
4− 1 3− 4 −3− 2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
x− 1 y − 4 z − 2

2 −3 −4
3 −1 −5

∣∣∣∣∣∣ = 0,

or 11x−2y+7z−17 = 0 with the normal vector n = 〈11,−2, 7〉. The normal
vector to the plane xy is k = (0, 0, 1) and cosine of the angle between the
planes is

cos ϕ =
n · k
|n| · |k|

=
7√
174

8. (a) The position vector of the particle whose velocity is v(t) and initial
position is r0 = r(t0) can be found as

r(t) = r0 +
∫ t

t0

v(t) dt.



Since t0 = 0, and r0 and v are given, one has

r(4) = 〈−1, 5, 4〉+
∫ 4

0
〈2t, 2

√
t, 1〉 dt = 〈−1, 5, 4〉+ 〈16, 32/3, 4〉 = 〈15, 47/3, 8〉.

(b) The tangent line to the curve at t = 4 is parallel to the vector v(4) =
〈8, 4, 1〉, and the equation of the line is

x = 8t + 15, y = 4t + 47/3, z = t + 8.

(c) The position vector of the particle is

r(t) = r0 +
∫ t

t0

v(t) dt = 〈−1, 5, 4〉+ 〈t3/3, 4/3 t3/2, t〉,

so the particle pass through P : r(9) = 〈80, 41, 13〉.
(d) The length of the arc traveled from t = 1 to t = 2 is

L =
∫ 2

1

√
(2t)2 + (2

√
t)2 + 12 dt =

∫ 2

1
(2t + 1) dt = 4.

9. The surface is a hyperboloid of one sheet

x2

12
+

y2

(1/
√

3)2
− z2

(1/
√

2)2
= 1

10. The generic equation of the tangent plane to the graph of z = y ln x
at the point where (x, y) = (x0, y0) is

z = y0 ln x0 +
y0

x0
(x− x0) + ln x0(y − y0)

and at (1, 4, 0) it is z = 4(x− 4), or 4x− z − 4 = 0.
11. To find the distance between the planes, fix any point on the first

plane (i.e. any point A(x, y, z) such that z = 2x + y− 1) and find a distance
from this point to the second plane. Let, for example A(1, 0, 1). Then the
distance d from the point A to the plane is

d =
|(1)(−4) + 0(−2) + (1)(2)− 3|√

(−4)2 + (−2)2 + 22
=

5√
24

.

Another method to solve the problem is the following. Find the equations
of the line through A perpendicular to the second plane (parallel to it’s
normal vector):

x = −4t + 1, y = −2t, z = 2t + 1

and the point of intersection with the plane B solving the equation

−4(−4t + 1)− 2(−2t) + 2(2t + 1) = 3

for t. It’s easy to see that t = 5/24 and B(1/6,−5/12, 17/12) and

d =
√

(1/6− 1)2 + (−5/12− 0)2 + (17/12− 1)2 =
5√
24

.



12. The surface is a hyperboloid of one sheet. Indeed, by completing the
squares, we have

4x2 + 4(y2 − 2y + 1)− 4− z2 = 0,

and after division by 4:

x2

12
+

(y − 1)2

12
− z2

22
= 1

14. The limit

lim
(x,y)→(0,0)

3x2y2

2x4 + y4

does not exist because if we consider two different directions along two dif-
ferent lines x = 0 and y = x, we obtain different answers:

along x = 0 :
3 · 02x2

2 · 04 + y4
= 0→ 0

along y = x :
3x2x2

2x4 + x4
=

3x4

3x4
→ 1

15. It is easy to find two different points on the line by letting t = 0 and
t = 1: Q(2, 1, 2) and R(5, 0, 4). Now the plane through the points P , Q and
R is ∣∣∣∣∣∣

x− 1 y − 1 z − 0
2− 1 1− 1 2− 0
5− 1 0− 1 4− 0

∣∣∣∣∣∣ = 0,

or 2x + 4y − z = 6.
16. (a) fx = 3x2 − y2, fy = −2xy + 1, fxy = −2y.
(b) fx = 1√

x2+y2
, fy = y√

x2+y2(x+
√

x2+y2)
, and fxy = − y

(x2+y2)3/2 .

(c) Let z = f(x, y) be f(x, y) = x2 cos x2y. Then

fx = 2x cos x2y − 2x3y sin x2y, fy = −x4 sin x2y,

and

fxy = −4x3 sin x2y − 2x5y cos x2y

17. The linear approximation of f(x, y) at (1, 1) is

L(x, y) = f(1, 1) + fx(1, 1)(x− 1) + fy(1, 1)(y − 1) = e + 2e(x− 1) + e(y − 1)

since fx = yex(1 + x) and fy = xex. Therefore f(1.1, 0.9) is approximately
L(1.1, 0.9) = 2.99.

18. Find the parametrization of the curve: let x = t, then y = t2 and
z = 3t2, so r(t) = (t, t2, 2t2 + t4).


