1. The line L through the points A and B is parallel to the vector $\overrightarrow{A B}=\langle 3,2,-1\rangle$ and has parametric equations $x=3 t+2, y=2 t+1$, $z=-t-1$. Therefore, the intersection point of the line with the plane should satisfy:

$$
2(3 t+2)-3(2 t+1)+4(-t-1)=13
$$

Solving the last equation with respect to the parameter t, we obtain $t=-4$ and the coordinates of the intersection point are

$$
(3(-4)+2,2(-4)+1,-(-4)-1)=(-10,-7,3)
$$

2. (a) The curves meet at the point C if and only if components of the vectors $\mathbf{r}_{1}(t)$ and $\mathbf{r}_{2}(t)$ coincide, i.e.

$$
\begin{aligned}
& t=3-s \\
& 1-t=s-2 \\
& 3+t^{2}=s^{2}
\end{aligned}
$$

From the first and last equations, we have $3+(3-s)^{2}=s^{2}$, solving which we obtain $s=2$. Now from the first equation $t=1$ which also satisfy the second equation. The conclusion is that the point $(1,0,4)$ is the point of intersection of the curves.
(b) Let's find the tangent vectors of the curves: for C_{1} the tangent vector is $\mathbf{r}^{\prime}(t)=\langle 1,-1,2 t\rangle$ and for the curve C_{2} the tangent vector is $\mathbf{r}^{\prime}(s)=$ $\langle-1,1,2 s\rangle$. At the intersection of C_{1} and C_{2} one has $t=1$ and $s=2$, so L_{1} is parallel to the vector $\langle 1,-1,2\rangle$ and L_{2} is parallel to $\mathbf{r}^{\prime}(s)=\langle-1,1,4\rangle$. Since both lines contain the point $(1,0,4)$, the equations of the lines are

$$
L_{1}: \quad x=t+1, y=-t, z=2 t+4
$$

and

$$
L_{2}: \quad x=-s+1, y=s, z=4 s+4
$$

3. Suppose that C has coordinates (x, y, z). Then from the vector equality $\overrightarrow{A C}=\overrightarrow{B D}$, one has

$$
\langle x-2, y-5, z-1\rangle=\langle 5-3,2-1,-3-4\rangle
$$

and $x=4, y=6, z=-6$.
4. (a) Since $\overrightarrow{A B}=\langle-1,-1,2\rangle$ and $\overrightarrow{A C}=\langle-2,1,1\rangle$, the scalar projection of $\overrightarrow{A C}$ onto $\overrightarrow{A B}$ is

$$
\operatorname{comp}_{\overrightarrow{A B}} \overrightarrow{A C}=\frac{\overrightarrow{A B} \cdot \overrightarrow{A C}}{|\overrightarrow{A B}|}=\frac{(-1)(-2)+(-1)(1)+2(1)}{\sqrt{(-1)^{2}+(-1)^{2}+2^{2}}}=\frac{3}{\sqrt{6}}
$$

Therefore, the vector projection is this scalar projection times the unit vector in the direction of $\overrightarrow{A B}$:

$$
\operatorname{proj}_{\overrightarrow{A B}} \overrightarrow{A C}=\frac{3}{\sqrt{6}} \frac{\overrightarrow{A B}}{|\overrightarrow{A B}|}=\frac{1}{2} \overrightarrow{A B}=\langle-1 / 2,-1 / 2,1\rangle
$$

(b) The area S of the triangle $A B C$ is the half of the area of the parallelogram with adjacent sides $A B$ and $A C$ which is the length of the cross product:

$$
S=\frac{1}{2}|\overrightarrow{A B} \times \overrightarrow{A C}|=\frac{1}{2}|\langle-3,-3,-3\rangle|=\frac{3 \sqrt{3}}{2}
$$

(c) The line L containing $A(2,1,0)$ and parallel to the vector $\overrightarrow{A B}=$ $\langle-1,-1,2\rangle$ has parametric equations

$$
x=-t+2, \quad y=-t+1, \quad z=2 t
$$

The square of the distance from the arbitrary point D on the line to the point C is a function depending on the parameter t :

$$
F(t)=|\overrightarrow{C D}|^{2}=(-t+2)^{2}+(-t-1)^{2}+(2 t-1)^{2}=6 t^{2}-6 t+6
$$

To minimize the distance, set $\frac{d}{d t} F(t)=0$, and solve for t to obtain $t=1 / 2$. Hence, the required distance from the point C to the line L is $d=F(1 / 2)=$ 9/2.
5. First, note that any direction vector of the line L is perpendicular both of the normal vectors $\mathbf{n}_{1}=(1,-2,1)$ and $\mathbf{n}_{2}=(2,1,1)$. Hence, L is parallel to the vector

$$
\mathbf{v}=\mathbf{n}_{1} \times \mathbf{n}_{2}=(-3,1,5)
$$

Now, it is sufficient to find any point on L, i.e. a point satisfying $x-2 y+z=1$ and $2 x+y+z=1$. Let, for example, $x=0$. Then, solving the system of equations $-2 y+z=1$ and $y+z=1$, we obtain solutions $y=0$ and $z=1$, so the point $(0,0,1)$ is on the line and the parametric equations of L are

$$
x=-3 t, \quad y=t, \quad z=5 t+1
$$

6. The line L_{1} is parallel to the vector

$$
\mathbf{v}_{1}=\langle-1-1,4-0,1-1\rangle=2 \cdot\langle-1,2,0\rangle
$$

and L_{2} is parallel to the vector

$$
\mathbf{v}_{2}=\langle 4-2,4-3,-3-(-1)\rangle=\langle 2,1,-2\rangle
$$

We see that the lines L_{1} and L_{2} are not parallel to each other, because the vectors \mathbf{v}_{1} and \mathbf{v}_{2} are not proportional: there is no such a $k \neq 0$ so that $\mathbf{v}_{1}=k \cdot \mathbf{v}_{2}$ (one can also check that $\mathbf{v}_{1} \times \mathbf{v}_{2} \neq \mathbf{0}$). The parametric equations of L_{1} through $(1,0,1)$ are

$$
x=-t+1, \quad y=2 t, \quad z=1
$$

and the line L_{2} containing $(2,3,-1)$ has parametric equations

$$
x=2 s+2, \quad y=s+3, \quad z=-2 s-1
$$

To find intersection point of L_{1} and L_{2}, we should find values of t and s such that

$$
\begin{aligned}
-t+1 & =2 s+2, \\
2 t & =s+3, \\
1 & =-2 s-1
\end{aligned}
$$

Solving the last two equations, we get $t=1$ and $s=-1$ which satisfy the first equation. Therefore, the lines L_{1} and L_{2} intersect at the point $(0,2,1)$.
7. (a) First, compute the components of the vectors $\overrightarrow{A B}, \overrightarrow{A C}$, and $\overrightarrow{A D}$:

$$
\begin{aligned}
& \overrightarrow{A B}=\langle 3-1,1-4,-2-2\rangle=\langle 2,-3,-4\rangle \\
& \overrightarrow{A C}=\langle 4-1,3-4,-3-2\rangle=\langle 3,-1,-5\rangle \\
& \overrightarrow{A D}=\langle 1-1,0-4,-1-2\rangle=\langle 0,-4,-3\rangle .
\end{aligned}
$$

The volume V of the parallelepiped is the absolute value of the scalar triple product

$$
\overrightarrow{A B} \cdot(\overrightarrow{A C} \times \overrightarrow{A B})=\left|\begin{array}{lll}
2 & -3 & -4 \\
3 & -1 & -5 \\
0 & -4 & -3
\end{array}\right|=-13
$$

and V is equal to 13 .
(b) The equation of the plane through A, B, and D is given by the determinant

$$
\left|\begin{array}{ccc}
x-1 & y-4 & z-2 \\
3-1 & 1-4 & -2-2 \\
1-1 & 0-4 & -1-2
\end{array}\right|=\left|\begin{array}{ccc}
x-1 & y-4 & z-2 \\
2 & -3 & -4 \\
0 & -4 & -3
\end{array}\right|=0,
$$

or $-7 x+6 y-8 z=1$.
(c) The plane through A, B, and C is

$$
\left|\begin{array}{ccc}
x-1 & y-4 & z-2 \\
3-1 & 1-4 & -2-2 \\
4-1 & 3-4 & -3-2
\end{array}\right|=\left|\begin{array}{ccc}
x-1 & y-4 & z-2 \\
2 & -3 & -4 \\
3 & -1 & -5
\end{array}\right|=0,
$$

or $11 x-2 y+7 z-17=0$ with the normal vector $\mathbf{n}=\langle 11,-2,7\rangle$. The normal vector to the plane $x y$ is $\mathbf{k}=(0,0,1)$ and cosine of the angle between the planes is

$$
\cos \varphi=\frac{\mathbf{n} \cdot \mathbf{k}}{|\mathbf{n}| \cdot|\mathbf{k}|}=\frac{7}{\sqrt{174}}
$$

8. (a) The position vector of the particle whose velocity is $\mathbf{v}(t)$ and initial position is $\mathbf{r}_{0}=\mathbf{r}\left(t_{0}\right)$ can be found as

$$
\mathbf{r}(t)=\mathbf{r}_{0}+\int_{t_{0}}^{t} \mathbf{v}(t) d t
$$

Since $t_{0}=0$, and \mathbf{r}_{0} and \mathbf{v} are given, one has
$\mathbf{r}(4)=\langle-1,5,4\rangle+\int_{0}^{4}\langle 2 t, 2 \sqrt{t}, 1\rangle d t=\langle-1,5,4\rangle+\langle 16,32 / 3,4\rangle=\langle 15,47 / 3,8\rangle$.
(b) The tangent line to the curve at $t=4$ is parallel to the vector $\mathbf{v}(4)=$ $\langle 8,4,1\rangle$, and the equation of the line is

$$
x=8 t+15, y=4 t+47 / 3, z=t+8
$$

(c) The position vector of the particle is

$$
\mathbf{r}(t)=\mathbf{r}_{0}+\int_{t_{0}}^{t} \mathbf{v}(t) d t=\langle-1,5,4\rangle+\left\langle t^{3} / 3,4 / 3 t^{3 / 2}, t\right\rangle
$$

so the particle pass through $P: \mathbf{r}(9)=\langle 80,41,13\rangle$.
(d) The length of the arc traveled from $t=1$ to $t=2$ is

$$
L=\int_{1}^{2} \sqrt{(2 t)^{2}+(2 \sqrt{t})^{2}+1^{2}} d t=\int_{1}^{2}(2 t+1) d t=4
$$

9. The surface is a hyperboloid of one sheet

$$
\frac{x^{2}}{1^{2}}+\frac{y^{2}}{(1 / \sqrt{3})^{2}}-\frac{z^{2}}{(1 / \sqrt{2})^{2}}=1
$$

10. The generic equation of the tangent plane to the graph of $z=y \ln x$ at the point where $(x, y)=\left(x_{0}, y_{0}\right)$ is

$$
z=y_{0} \ln x_{0}+\frac{y_{0}}{x_{0}}\left(x-x_{0}\right)+\ln x_{0}\left(y-y_{0}\right)
$$

and at $(1,4,0)$ it is $z=4(x-4)$, or $4 x-z-4=0$.
11. To find the distance between the planes, fix any point on the first plane (i.e. any point $A(x, y, z)$ such that $z=2 x+y-1)$ and find a distance from this point to the second plane. Let, for example $A(1,0,1)$. Then the distance d from the point A to the plane is

$$
d=\frac{|(1)(-4)+0(-2)+(1)(2)-3|}{\sqrt{(-4)^{2}+(-2)^{2}+2^{2}}}=\frac{5}{\sqrt{24}} .
$$

Another method to solve the problem is the following. Find the equations of the line through A perpendicular to the second plane (parallel to it's normal vector):

$$
x=-4 t+1, \quad y=-2 t, \quad z=2 t+1
$$

and the point of intersection with the plane B solving the equation

$$
-4(-4 t+1)-2(-2 t)+2(2 t+1)=3
$$

for t. It's easy to see that $t=5 / 24$ and $B(1 / 6,-5 / 12,17 / 12)$ and

$$
d=\sqrt{(1 / 6-1)^{2}+(-5 / 12-0)^{2}+(17 / 12-1)^{2}}=\frac{5}{\sqrt{24}}
$$

12. The surface is a hyperboloid of one sheet. Indeed, by completing the squares, we have

$$
4 x^{2}+4\left(y^{2}-2 y+1\right)-4-z^{2}=0
$$

and after division by 4 :

$$
\frac{x^{2}}{1^{2}}+\frac{(y-1)^{2}}{1^{2}}-\frac{z^{2}}{2^{2}}=1
$$

14. The limit

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2} y^{2}}{2 x^{4}+y^{4}}
$$

does not exist because if we consider two different directions along two different lines $x=0$ and $y=x$, we obtain different answers:

$$
\begin{array}{r}
\text { along } x=0: \quad \frac{3 \cdot 0^{2} x^{2}}{2 \cdot 0^{4}+y^{4}}=0 \rightarrow 0 \\
\text { along } y=x: \quad \frac{3 x^{2} x^{2}}{2 x^{4}+x^{4}}=\frac{3 x^{4}}{3 x^{4}} \rightarrow 1
\end{array}
$$

15. It is easy to find two different points on the line by letting $t=0$ and $t=1: Q(2,1,2)$ and $R(5,0,4)$. Now the plane through the points P, Q and R is

$$
\left|\begin{array}{lll}
x-1 & y-1 & z-0 \\
2-1 & 1-1 & 2-0 \\
5-1 & 0-1 & 4-0
\end{array}\right|=0
$$

or $2 x+4 y-z=6$.
16. (a) $f_{x}=3 x^{2}-y^{2}, f_{y}=-2 x y+1, f_{x y}=-2 y$.
(b) $f_{x}=\frac{1}{\sqrt{x^{2}+y^{2}}}, f_{y}=\frac{y}{\sqrt{x^{2}+y^{2}}\left(x+\sqrt{x^{2}+y^{2}}\right)}$, and $f_{x y}=-\frac{y}{\left(x^{2}+y^{2}\right)^{3 / 2}}$.
(c) Let $z=f(x, y)$ be $f(x, y)=x^{2} \cos x^{2} y$. Then

$$
f_{x}=2 x \cos x^{2} y-2 x^{3} y \sin x^{2} y, \quad f_{y}=-x^{4} \sin x^{2} y
$$

and

$$
f_{x y}=-4 x^{3} \sin x^{2} y-2 x^{5} y \cos x^{2} y
$$

17. The linear approximation of $f(x, y)$ at $(1,1)$ is
$L(x, y)=f(1,1)+f_{x}(1,1)(x-1)+f_{y}(1,1)(y-1)=e+2 e(x-1)+e(y-1)$ since $f_{x}=y e^{x}(1+x)$ and $f_{y}=x e^{x}$. Therefore $f(1.1,0.9)$ is approximately $L(1.1,0.9)=2.99$.
18. Find the parametrization of the curve: let $x=t$, then $y=t^{2}$ and $z=3 t^{2}$, so $\mathbf{r}(t)=\left(t, t^{2}, 2 t^{2}+t^{4}\right)$.
