Formula sheet for Math 233, Oct. 14

This is the only formula sheet that you can bring to the exam I on Oct. 14. No other formulas are allowed to write on this sheet. There will be no formula sheet provided in the exam II.

$$
\begin{gathered}
\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}=\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta \\
\mathbf{a} \times \mathbf{b}=\left[\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\mathbf{a}_{\mathbf{1}} & \mathbf{a}_{\mathbf{2}} & \mathbf{a}_{\mathbf{3}} \\
\mathbf{b}_{\mathbf{1}} & \mathbf{b}_{\mathbf{2}} & \mathbf{b}_{\mathbf{3}}
\end{array}\right] \\
|\mathbf{a} \times \mathbf{b}|=\|\mathbf{a}\|\|\mathbf{b}\| \sin \theta
\end{gathered}
$$

- The equation of plane through $\left(x_{0}, y_{0}, z_{0}\right)$ with normal vector $\langle a, b, c\rangle$ is

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

- The equation of a line through $\left(x_{0}, y_{0}, z_{0}\right)$ with direction vector $\langle a, b, c\rangle$ is

$$
\mathbf{r}(t)=\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle+t\langle a, b, c\rangle
$$

symmetric equation

$$
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}
$$

Parametric equation:

$$
x=x_{0}+a t . y=y_{0}+b t z=z_{0}+c t
$$

- The arclength of an $\operatorname{arc} \mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$, for $a \leq t \leq b$ is

$$
\int_{a}^{b} \sqrt{\left|x^{\prime}(t)\right|^{2}+\left|y^{\prime}(t)\right|^{2}+\left|z^{\prime}(t)\right|^{2}} d t .
$$

