1. a) Find the equation of the plane containing the points $P(1,3,0), Q(2,-1,2)$ and $R(0,0,1)$.
b) Find all points of intersection of the parametric curve $\mathbf{r}(t)=\left\langle 2 t^{2}-2, t, 1-t-t^{2}\right\rangle$ and the plane $x+y+z=3$.
2. Find the absolute maximum and minimum of the function $f(x, y)=x^{2}+2 y^{2}-2 y$ on the closed disc $x^{2}+y^{2} \leq 5$ of radius $\sqrt{5}$.
3. Evaluate

$$
\iint_{R} x y d A
$$

where R is the region in the first quadrant bounded by the line $y=2 x$ and the parabola $y=x^{2}$.
4. Consider the vector field $\mathbf{F}(x, y)=\left\langle 2 x y+\sin y, x^{2}+x \cos y+1\right\rangle$.
a) Show that $\mathbf{F}(x, y)$ is conservative by finding a potential function $f(x, y)$ for $\mathbf{F}(x, y)$.
b) Use your answer to (a) to evaluate the line integral

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

where C is the arc of the parabola $y=x^{2}$ going from $(0,0)$ to $(2,4)$. (Even if you did not get (a), you can still get partial credit by explaining how to use a potential function to evaluate this integral.)
5. Evaluate the line integral

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

where $\mathbf{F}=\left\langle y^{2}+\sin x, x y\right\rangle$ and C is the unit circle oriented counterclockwise.
6. Evaluate the line integral

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

where $\mathbf{F}=\left\langle y^{2}, 2 x y+x\right\rangle$ and C is the curve starting at $(0,0)$, travelling along a line segment to $(2,1)$ and then travelling along a second line segment to $(0,3)$.

