1) Express the double integral

$$
\iint_{R} x^{2} y-x d A
$$

as an interated integral and evaluate it, where $R$ is the first quadrant region enclosed by the curves $y=0, y=x^{2}$ and $y=2-x$. b) Find an equivalent iterated integral expression for the double integral in 1a), where the order of intergration is reversed from the order used in part 1a). (Do not evaluate this integral.)
2) Calculate the line integral

$$
\int_{C} \mathbf{F} \cdot \mathbf{d r}
$$

where $\mathbf{F}(x, y)=y^{2} x \mathbf{i}+x y \mathbf{j}$, and $C$ is the path starting at $(1,2)$, moving along a line segment to $(3,0)$ and then moving along a second line segment to $(0,1)$.
3) Evaluate the integral

$$
\iint_{R} y \sqrt{x^{2}+y^{2}} d A
$$

with $R$ the region $\left\{(x, y): 1<x^{2}+y^{2}<2, \quad 0<y<x.\right\}$
4a) Show that the vector field

$$
\mathbf{F}(x, y)=\left\langle\frac{1}{y}+2 x,-\frac{x}{y^{2}}+1\right\rangle
$$

is conservative by finding a potential function $f(x, y)$.
$\mathbf{4 b}$ ) Let $C$ be the path described by the parametric curve $\mathbf{r}(t)=<1+2 t, 1+t^{2}>$ for $0 \leq t \leq 1$. Use your answer from $\mathbf{4 a}$ ) to determine the value of the line integral

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

5a) Find the equation of the tangent plane at the point $P=(1,1,-1)$ in the level surface $f(x, y, z)=$ $3 x^{2}+x y z+z^{3}=1$.
b) Find the directional derivative of the function $f(x, y, z)$ at $P=(1,1,-1)$ in the direction of the tangent vector to the space curve $\mathbf{r}(t)=\left\langle 2 t^{2}-t, t^{-2}, t^{2}-2 t^{3}\right\rangle$ at $t=1$.
6) Find the absolute maxima and minima of the function

$$
f(x, y)=x^{2}-2 x y+2 y^{2}-2 y
$$

in the region bounded by the lines $x=0, y=0$ and $x+y=7$.

