DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS

MATH 233 Solution to EXAM 1 Fall 2010

- 1. Given two vectors $\mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{b} = \mathbf{i} \mathbf{j} + \mathbf{k}$
 - (a) Find $\mathbf{proj_ab}$, the vector projection of \mathbf{b} onto \mathbf{a} .

First calculate $comp_ab$:

$$\mathbf{comp_ab} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|} = \frac{1}{\sqrt{3}}.$$

So $\mathbf{proj_ab} = \mathbf{comp_ab}_{\mathbf{a}\mathbf{b}} = \frac{1}{\sqrt{3}} \frac{\langle 1,1,1 \rangle}{\sqrt{3}} = \left\langle \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \right\rangle$

(b) Find the angle θ formed by **a** and **b**.

Use formula $\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$. We get $\cos \theta = \frac{1}{3}$ and $\theta = \arccos(1/3)$.

- 2. Consider the points P(2,2,6), Q(0,5,5), R(3,1,7).
 - (a) Find a nonzero vector orthogonal to the plane through the points P, Q, and R.

$$\overrightarrow{PQ} = \langle -2, 3, -1 \rangle$$

$$\overrightarrow{PR} = \langle 1, -1, 1 \rangle$$

$$\overrightarrow{PQ} \times \overrightarrow{PR} = \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & 3 & -1 \\ 1 & -1 & 1 \end{bmatrix} = 2\mathbf{i} + \mathbf{j} - \mathbf{k}$$

The vector $\overrightarrow{PQ} \times \overrightarrow{PR}$ is orthogonal to the plane through the points P, Q, and R.

(b) Find the area of the triangle PQR.

We know $\left|\overrightarrow{PQ} \times \overrightarrow{PR}\right|$ is the area of the parallelogram spanned by the vectors \overrightarrow{PQ} and \overrightarrow{PR} , therefore,

$$A_{\Delta PQR} = \frac{|\overrightarrow{PQ} \times \overrightarrow{PR}|}{2} = \frac{\sqrt{2^2 + 1^2 + (-1)^2}}{2} = \frac{\sqrt{6}}{2}$$

3. Find an equation of the plane that passes through the point

$$(9,0,-3)$$
 and contains the given line $x = 7 - 2t$, $y = 1 + 3t$, $z = 6 + 4t$.

To find a normal vector \mathbf{n} to the plane, we will first find two non-parallel vectors \mathbf{v}_1 and \mathbf{v}_2 on the plane. We can take $\mathbf{n} = \mathbf{v}_1 \times \mathbf{v}_2$ which will be orthogonal to both \mathbf{v}_1 and \mathbf{v}_2 and thus normal to the plane.

Since the given line lies on the plane, its direction vector $\langle -2, 3, 4 \rangle$ is on the plane. Let $\mathbf{v}_1 := \langle -2, 3, 4 \rangle$.

To find the second vector we look at two points on the plane, one of which must not be on the line. We can take our two points to be $P_1(9,0,-3)$ and $P_2(7,1,6)$, the former being the given point on the plane and the latter being the point on the line at t=0. Then $\mathbf{v}_2 := \langle -2, 1, 9 \rangle$ is the vector going from P_1 to P_2 .

$$\mathbf{n} = \mathbf{v}_1 \times \mathbf{v}_2$$

$$= \langle -2, 3, 4 \rangle \times \langle -2, 1, 9 \rangle$$

$$= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & 3 & 4 \\ -2 & 1 & 9 \end{vmatrix}$$

$$= \langle 23, 10, 4 \rangle$$

Using the normal vector **n** and the point $P_1(9,0,-3)$ on the plane, the equation of the plane is given by:

$$23(x-9) + 10(y-0) + 4(z+3) = 0$$

Which can be simplified to:

$$23x + 10y + 4z - 195 = 0$$

- 4. We all know that $x^2 + y^2 + z^2 = 26$ is a sphere, denoted as S, in the space.
 - (a) Is any of the surfaces $x-y^2=z^2$, $x^2+\frac{y^2}{5}=1-z^2$ or $x^2+y^2-z^2=24$ inside of that sphere S?

The surface $x - y^2 = z^2$ is not in the sphere; rewriting it as $x = y^2 + z^2$, one sees that it is a parabaloid and thus unbounded. The surface $x^2 + \frac{y^2}{5} + z^2 = 1$ is an ellipsoid. It's extreme points on the three axes are $(\pm 1, 0, 0)$, $(0, \pm \sqrt{5}, 0)$ and (0, 0, 1), all of which are inside the sphere. Thus the entire ellipsoid is inside the sphere.

The surface $x^2 + y^2 - z^2 = 24$ is a hyperbaloid of one sheet, and thus is unbounded, so it cannot be inside the sphere.

(b) What type of curve is the intersection of $z = x^2 + y^2$ with that sphere S?

It is a circle, as one sees easily from graphing the two surfaces.

(c) Find the points of intersection between the helix $\langle \cos t, \sin t, t \rangle$ and that sphere S.

Replace the curve in the equation

$$(\cos t)^2 + (\sin t)^2 + t^2 = 26$$

then t = -5, 5. So it

intersects at the points $(\cos(-5), \sin(-5), -5)$ and $(\cos(5), \sin(5), 5)$.

5. Find a parametric equation that represents the curve of intersection of the two surfaces. The cylinder $x^2 + y^2 = 25$ and the surface z = xy

The projection of the cylinder onto the xy-plane is the circle $x^2 + y^2 = 25$, z = 0. So we can parametrize it by:

$$x = 5\cos t$$
, $y = 5\sin t$; $0 \le t \le 2\pi$.

Now from the equation of the surface z = xy we have

$$z = (5\cos t)(5\sin t) = 25\cos t\sin t.$$

So we can write the parametric equation for the curve of intersection C as:

$$x = 5\cos t$$
, $y = 5\sin t$, $z = 25\cos t\sin t$; $0 \le t \le 2\pi$.

6. Find $\mathbf{r}(t)$ if $\mathbf{r}'(t) = 8t^7\mathbf{i} + 4t^3\mathbf{j} + \sqrt{t}\mathbf{k}$ and $\mathbf{r}(1) = \mathbf{i} + \mathbf{j}$.

Since $\mathbf{r}'(t) = 8t^7\mathbf{i} + 4t^3\mathbf{j} + \sqrt{t}\mathbf{k}$, we know that $\mathbf{r}(t)$ will be some antiderivative of this function, so

$$\mathbf{r}(t) = \left\langle t^8, t^4, \frac{2}{3} t^{3/2} \right\rangle + \left\langle C_1, C_2, C_3 \right\rangle.$$

Using this formula, we see that $\mathbf{r}(1) = \left\langle 1 + C_1, 1 + C_2, \frac{2}{3} + C_3 \right\rangle$, so since $\mathbf{r}(1) = \langle 1, 1, 0 \rangle$, we can solve for C_1, C_2, C_3 to get $C_1 = 0$, $C_2 = 0$, and $C_3 = -\frac{2}{3}$. Thus:

$$\mathbf{r}(t) = \left\langle t^8, t^4, \frac{2}{3}t^{3/2} - \frac{2}{3} \right\rangle.$$

7. The position function of a particle is $\mathbf{r}(t) = \langle t^2, 5t, t^2 - 16t \rangle$. When is the speed of the particle a minimum?

First, find the velocity:

$$\mathbf{v}(t) = \mathbf{r}'(t) = \langle 2t, 5, 2t - 16 \rangle$$

Then the speed is

$$|\mathbf{v}(t)| = \sqrt{4t^2 + 25 + (2t - 16)^2} = \sqrt{8t^2 - 64t + 281}$$

The minimum of the speed occurs when the function $g(t) = 8t^2 - 64t + 281$ has a minimum. Since g'(t) = 16t - 64 has its only zero at t = 4, and since g''(4) = 16 > 0,

we know that when t = 4, the speed of the particle is indeed a minimum.