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Defining our objects of study

Intuitively: An n-dimensional topological manifold is a nice
(paracompact, separable) topological space which is locally
Euclidean of dimension n.

Throughout, we will take topological n-dimensional manifold to
mean a Hausdorff, metrizable topological space M together with
an atlas of charts {(Uα, ϕα)}α∈A, where the Uα form an open
covering of M, i.e. M = ∪αUα, and the maps
ϕα : Uα → ϕ(Uα) ⊆ Rn are homeomorphisms onto their images,
which are open sets of Rn.

The integer n is called the dimension of the manifold. We will
ultimately focus on the case when n = 4.
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Defining our objects of study

An atlas is called smooth, or C∞, if the charts for any two
overlapping sets of the cover induce a diffeomorphism (a C∞ map
with C∞ inverse):

For all α, β ∈ A such that Uαβ := Uα ∩ Uβ 6= ∅,

ϕαβ := ϕβ ◦ ϕ−1α
∣∣
ϕα(Uαβ)

: ϕα(Uαβ)→ ϕβ(Uαβ)

is a C∞ map with C∞ inverse ϕβα defined in the obvious way. We
say that the charts (Uα, ϕα), and (Uβ, ϕβ) are C∞-compatible.

A smooth structure on a topological n-manifold M is a choice of a
maximal smooth atlas, i.e. a smooth atlas A := {(Uα, φα)}α∈A
such that for any chart (V , ψ) smoothly compatible with (Uα, ϕα)
for all α ∈ A is itself in the atlas: (V , ψ) ∈ A.
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Defining our objects of study

If A is a C∞ atlas on a topological manifold M, then there is
a unique maximal atlas on M which contains A, so in
particular a smooth atlas on M, if one exists, determines a
smooth structure on M.

One can ask if a given topological manifold supports distinct
(i.e. inequivalent) smooth structures. This was answered in
the affirmative, as we’ll discuss.

Two manifolds M and N are diffeomorphic if there is a C∞
map F : M → N which is a homeomorphism with C∞ inverse
F−1 : N → M.

Let M and N be homeomorphic spaces which are Hausdorff
and metrizable and each supporting smooth structures. If
there is no diffeomorphism F : M → N, then the smooth
structures they support are distinct. We call such a pair of
homeomorphic but not diffeomorphic manifolds an exotic pair.
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Notational conventions

Throughout, X will denote an abstract, closed (compact,
boundaryless and connected), oriented, topological 4-manifold.

χ(X ) will denote the Euler characteristic of X , which by
Poincaré duality may be computed as 2− 2b1 + b2, where
b1 := rankH1(X ;Z) and b2 := rankH2(X ;Z) are the first
and second Betti numbers. Integral homology groups will be
abbreviated to omit the coefficients, Hk(X ) := Hk(X ;Z).

Σg will denote a genus g orientable surface (there’s a unique
orientable genus g surface up to diffeomorphism),

Dn will denote an n-dimensional disk, and Sn = ∂Dn+1 an
n-dimensional sphere.
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Notational conventions

If Y , Z are manifolds of dimension n then their connect sum,
denoted Y#Z , is the manifold obtained by deleting an n-disk
in the interior of each, and then gluing the resulting Sn−1
boundary components:

Y#Z = (Y \ Dn) ∪∂Dn (Y \ Dn) .

Iterated connect sums are indicated by putting the number of
summands after the sum sign: e.g. #3X := X#X#X .

Some common 4-manifolds we will see are the complex
projective plane CP2, elliptic surfaces E (n), Dolgachev
surfaces E (n)p,q, and various surface bundles over surfaces.
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Early Results

In 1956, John Milnor described the first exotic pair: he
constructed a seven dimensional manifold by considering
certain S3 bundles over S4, with structure group SO(4). Using
Morse theory he could show that his examples were
homeomorphic to S7. He constructed an invariant (Milnor’s λ
invariant) which distinguished the smooth structures on his
examples from the standard smooth structure on S7. This
gives the first historical counterexample to the smooth
generalized Poincaré conjecture.

Stephen Smale proved the h-cobordism theorem in 1962. The
power of this theorem is to simplify many arguments in the
differential topology of higher dimensional manifolds.
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Early Results

Two n-manifolds M and N are h-cobordant if there is an
n + 1 dimensional manifold W such that ∂W = M q N and
the inclusions of M and N into W are homotopy equivalences.
The h-cobordism theorem tells us that if n ≥ 5, and M and N
are simply connected manifolds h-cobordant through a
manifold W , then W is diffeomorphic to M × D1, and hence
M and N are diffeomorphic. The proof relies on Morse theory
and a technical result involving embedded disks called “the
Whitney trick”.

The method of proof fails smoothly in dimension 4. However,
in 1981 Michael Freedman proved the topological h-cobordism
theorem for 4-manifolds. The result hinges on finding a way
to surmount the problem of self-intersecting disks in a
topological handle decomposition of the the topological
manifold underlying the cobordism. Thus, a 4D topological
“Whitney trick” was found. The trade off: Casson handles,
which are homeomorphic to D2 × R2 but smoothly
inequivalent to standard (open) 2-handles.
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Early Results

S. K. Donaldson developed polynomial invariants, coming
from Yang-Mills Theory (a non-abelian gauge theory) which
detect smooth structure. He used these to give the first
counterexamples to a smooth 4D version of the h-cobordism.
In particular, he proved that Dolgachev surfaces D(n)p,q yield

infinitely many exotica homeomorphic to CP2#9CP2 for
n > 1, and p, q coprime.

In 1982 Freedman found an example of an exotic R4, and by
1985 Robert Gompf had shown that there were infinitely many
exotic structures on R4, in contrast to all other dimensions,
where there are at most finitely many smooth structures on a
given manifold. Indeed for n 6= 4, Rn has a unique smooth
structure!
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Intersection forms and the work of Freedman and Donaldson

The 4D landscape

Classifying all smooth oriented closed 4-manifolds by
homotopy type is untenable: given any finitely presented group
G , we can construct a smooth, closed, oriented 4-manifold X
(more generally, an n-manifold for any n ≥ 4) which has
π1(X ) ∼= G . Thus the classification is at least as hard as
classifying finitely presented groups, which is impossible (in
the sense of no algorithm can be produced), given the various
unsolvable decision problems related to group presentations.

A more feasible problem is the classification of smooth, closed,
simply connected 4-manifolds, at least up to homotopy.

The work of Freedman tells us that such X are indeed
classified up to homeomorphism by an algebro-topological
invariant called the intersection form.
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Intersection forms and the work of Freedman and Donaldson

Surfaces and Intersection Forms

Every element of H2(X ) can be represented by an embedded
surface Σ ↪→ X . This is true more generally for any oriented,
smooth 4-manifold, possibly with boundary, and an analogous
result holds for non-orientable surfaces and the second
homology with Z/2Z coefficients.

Given a closed smooth 4-manifold X , one can define a
unimodular symmetric bilinear form

QX : H2(X )/Torsion× H2(X )/Torsion→ Z ,

via the Kronecker pairing

QX ([Σ], [Σ′]) = 〈PD[Σ] ^ PD[Σ′], [X ]〉 .

By assuming our representative surfaces Σ and Σ′ are
generically embedded so as to intersect transversely,
QX ([Σ], [Σ′]) is just the signed number of intersections of Σ
and Σ′.
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Intersection forms and the work of Freedman and Donaldson

For a simply connected closed 4-manifold X , the only
interesting integer homology group is H2(X )
(H0(X ) ∼= Z ∼= H4(X ), while H1(X ) = 0 = H3(X ), by the
universal coefficients theorem, Poincaré duality and simple
connectivity). Thus one might hope and even suspect that the
intersection form QX is a useful invariant.

Unimodular symmetric bilinear integral forms come in two
flavors: definite and indefinite. The indefinite ones are
completely classified by their numerical invariants: rank,
signature, and type (also called parity).
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Intersection forms and the work of Freedman and Donaldson

Freedman’s theorem (1982) tells us that for every unimodular
symmetric bilinear integral form Q there exists a simply connected
closed topological 4-manifold X such that Q ∼= QX . Built upon
the work of Whitehead and Milnor showing that intersection forms
characterize homotopy type, Freedman proved that intersection
forms are a complete invariant of homeomorphism type of smooth,
closed, simply connected 4-manifolds.

Donaldson’s theorem states that if QX is the intersection form of a
simply connected closed smooth 4-manifold, and if QX is definite,
then it must be diagonalizable over the integers. Thus, invoking
Freedman and the existence of unimodular symmetric bilinear
integral forms QX which are definite and non-diagonalizable, we
know there exist non-smoothable 4-manifolds. Henceforth, our
focus will be on closed smooth 4-manifolds X which are simply
connected.
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Intersection forms and the work of Freedman and Donaldson

Donaldson’s theorem departs from the purely algebro-topological
machinery we’ve seen so far. In particular the proof requires
differential geometry (and in particular, a version of Yang-Mills
theory)! Assume QX is negative definite. Roughly, one endows X
with a Riemannian metric, and studies connections and curvature
forms on some C2-bundle E → X of Euler number 1. A connection
∇ has associated to it a curvature 2-form F∇. The Hodge star
operator on 4D 2-forms gives us a decomposition into self-dual and
anti-self dual parts. We can then seek connections whose curvature
form has vanishing anti-self dual component.
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Intersection forms and the work of Freedman and Donaldson

One then studies the moduli space, i.e. the space of all solutions
modulo gauge equivalence (meaning solutions up to equivalence
under the action of automorphisms of the bundle E ). The
remarkable fact is that after a slight perturbation and removal of a
finite collection of singular points, this space is an open
5-manifold! Donaldson discovered that this space can be naturally
compactified with X as a boundary, and after deleting
neighborhoods of the singularities, one obtains an h-cobordism to
#rCP2, where r = rankQX .
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Intersection forms and the work of Freedman and Donaldson

Donaldson developed invariants from the study of Yang-Mills
equations and the moduli space. In 1987 he provided the first
example of a closed simply connected exotic 4-manifold via an
H2(X ;Z) valued invariant ΓX built using the topology of the
Moduli space. The examples he applied this invariant to were
Dolgachev surfaces, which are elliptically fibered complex surfaces
obtained from simpler elliptic surfaces using a process called
logarithmic transformation (which is topologically a torus surgery,
where the torus is a fiber.)
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Intersection forms and the work of Freedman and Donaldson

Many of the Gauge theory results of Donaldson can be re-proven
with an abelian gauge theory called Seiberg-Witten theory. Here,
one studies the moduli space of solutions to certain elliptic PDEs
generalizing the Dirac equation (beloved grandparent to quantum
field theory). One obtains invariants which are used particularly
effectively in the study of exotic symplectic 4-manifolds.

Another powerful tool put to use in the quest to detect and
understand exotica are various Floer homologies (a kind of infinite
dimensional version of Morse homology).
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Glimpsing the Menagerie

Infinite Exotic Families
Using tools from symplectic and complex geometry, there’s been a
veritable race to produce various infinite families of exotic closed
simply connected 4-manifolds, with an emphasis on finding
examples with small Euler characteristic. The original examples,
Dolgachev surfaces, are elliptic fibrations, with the “smallest”
examples being E (1)p,q, having χ(E (1)p,q) = 12. There are plenty
of recent examples of strides towards ever smaller Euler
characteristic. For example, recently R. Inanç Baykur and Mustafa
Korkmaz have exhibited exotic CP2#4CP2. There are many
examples of families of exotic #mCP2#nCP2 for various
m + n > 5.
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Glimpsing the Menagerie

Exotic Knottings of surfaces
Given two (not necessarily orientable) embedded surfaces Σ ↪→ X ,
Σ′ ↪→ X , we say that they are an exotic pair of embeddings if there
is a homeomorphism of pairs (X ,Σ) ∼= (X ,Σ′) but no
diffeomorphism of these pairs. If X = S4, then we can define a
standard “unknotted” embedding (up to ambient isotopy) of any
closed surface Σ. If (X ,Σ) is homeomorphic to the standard pair
(X ,Σstd) for the unknotted embedding, but not diffeomorphic to
it, we say Σ is an exotic knotting of Σstd.

In 1987, S. Finashin, O. Viro, and M. Kreck proved the existence
of an infinite family of exotic knottings of #10RP2 in S4, a
phenomenon unique to 4-dimensions.
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Glimpsing the Menagerie

They used equivariant rational tangle surgery on Dolgachev
surfaces with a complex involution, and showed that their
construction realized the Dolgachev surfaces as a branched cover
over S4 with branch locus the “real locus” of fixed points of the
complex involution. The embeddings are mutually topologically
equivalent, but if the resulting embeddings were smoothly
equivalent, then the diffeomorphisms of pairs would lift to
diffeomorphisms of Dolgachev surfaces, contradicting their known
exoticness. Using other exotica, one can construct exotic
embeddings of any #mRP2 in S4 for m ≥ 10.

M. Kreck showed in 1990 that all these embeddings were
unknotted. In 2007 Finashin improved upon the original result,
getting exotic embeddings of #mRP2 in S4 for m ≥ 6.
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Glimpsing the Menagerie

Exotic Group Actions on 4-Manifolds
A group action on a manifold is called exotic if the group action is
equivariantly homeomorphic but not equivariantly diffeomorphic.
Ron Fintushel and Ron Stern first showed the existence of
orientation reversing exotic actions on S4 in 1981. In 2009
Fintushel, Stern, and Sunukjian produced orientation preserving
cyclic exotic actions on simply connected 4-manifolds with
interesting gauge theory (namely, manifolds with non-trivial
Seiberg-Witten invariants).
One can also differentiate between smoothly and symplectically or
holomorphically equivariant actions. Weimin Chen and Slawomir
Kwasik have investigated these distinctions for K3 surfaces (which
are complex surfaces homeomorphic to E (2)).
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Constructions

Where do Exotica in 4D come from?

Complex surfaces and log transforms - e.g. the Dolgachev
surfaces,

Rational blowdowns and knot surgery, rational tangle surgery,

Symplectic geometry: Luttinger surgery and “reverse
engineering”, symplectic fiber sums,

Lefschetz Fibrations: combinatorially constructive from
monodromy factorizations in a surface mapping class group.
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Symplectic Geography vs. Botany

Geography: Which pairs (χ, σ) are realized as the Euler
characteristic and signature of a closed complex surface or
closed symplectic 4-manifold? This problem is well understood
and gives rise to a symplectic analogue of the classification of
complex surfaces. We have many existence results, but not
necessarily a good understanding of the geometry of manifolds
realizing lattice points in certain regions.

Botany: Can we classify the diffeomorphism types all simply
connected 4-manifolds realizing a given pair? This problem is
hard and far from resolved for most pairs.
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Small exotica
How small can the Euler characteristic of a simply connected
closed exotic 4-manifold be? Are there exotic CP2s, CP2#CP2s,
or S2 × S2s? This is similar to the smooth generalized 4D Poincaré
conjecture, in that we know almost nothing about how to construct
examples or how to attempt a proof of nonexistence of exotica.
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Exotic Knottings: Are there any exotic knottings of orientable
surfaces in S4? How small can we make the genus? For
nonorientable surfaces, can we improve on Finashin’s lower bound?
(Exotically knotted connect sums of two Klein bottles, or of one
Klein bottle, or just RP2?)

A. Havens Some Curiosities in 4 Dimensions


	Manifolds and Conventions
	Defining our objects of study
	Notational conventions

	History
	Early Results
	Intersection forms and the work of Freedman and Donaldson

	Exotic Phenomena
	Glimpsing the Menagerie
	Constructions

	Problems

