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Review: Column Space and Null Space

Definitions of Column Space and Null Space

Definition

Let A ∈ Rm×n be a real matrix. Recall

The column space of A is the subspace ColA of Rm spanned
by the columns of A: ColA = Span {a1, . . . , an} ⊆ Rm where
A =

î
a1 . . . an

ó
.

Equivalently, ColA is the same as the image T (Rn) ⊆ Rmof
the linear map T (x) = Ax.

The null space of A is the subspace NulA of Rn consisting of
all vectors x which are solutions to the homogeneous equation
with matrix A: NulA := {x ∈ Rn |Ax = 0} ⊆ Rn

Equivalently, it is the kernel of the map T (x) = Ax.
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Rank and Nullity

Rank: The Dimension of the Column Space

Definition

The rank of a linear map T : V →W between finite dimensional
vector spaces V and W is the dimension of the image:

rankT = dimT (V ) .

Given an m × n matrix A, the rank of A is the dimension of the
column space of A:

rankA = dimColA .

Remark

Observe that rankT ≤ dimV and rankT ≤ dimW .
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Rank and Nullity

Remark

We know rankT ≤ dimV because the image subspace is spanned
by the images of basis vectors, and so in particular, T (V ) is
spanned by a set of dimV vectors, which is an upper bound on the
size of a linearly independent spanning set.

That rankT ≤ dimW follows from the fact that T (V ) is a
subspace of W , and so its dimension is less than or equal to the
dimension of W .
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Rank and Nullity

Nullity: The Dimension of the Null Space

Definition

The nullity of a linear map T : V →W between finite dimensional
vector spaces V and W is the dimension of the kernel:

nullityT = dim kerT .

Given an m × n matrix A, the nullity of A is the dimension of the
null space of A:

nullity A = dimNulA .
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Rank and Nullity

Remark

Observe that nullityT ≤ dimV , but it need not be bounded by
the dimension of W .

Exercise

Explain the above remark about the bound on the nullity of a
linear map. What is the relationship between the dimension of the
codomain and the nullity?
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Rank and Nullity

Finding a Basis of the Column Space

To find a basis of the Column space of A, find a row equivalent
matrix B is echelon form and locate the pivot columns.

Recall that the corresponding columns of A are the pivot columns
of A. As each non-pivot column corresponds to a free variable, any
non-pivot columns may be realized as linear combinations of the
pivot columns.

Thus the pivot columns of A are a maximal linearly independent
subset of the column of A, and span ColA.

That is, the pivot columns of A are a basis of the column space of
A.
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Rank and Nullity

Finding a Basis of the Null Space

To find a basis of the null space of A, solve the homogeneous
system Ax = 0.

The solution vector x can be written as a linear combination of
some vectors weighted by free variables.

Since each such vector corresponds to a unique free variable, it will
have a one in a coordinate position where the other vectors have
zeros.

Thus, the matrix whose columns are these vectors spanning the
null space has as many pivots as the system has free variables, and
so this collection is linearly independent and forms a basis of the
null space.
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Rank and Nullity

Summarizing: Computing Rank and Nullity

A basis of ColA is given by the pivot columns of A. Be careful to
use the columns of the original matrix A and not of RREF(A)!
The rank is the number of pivot columns of A, or equivalently the
number of pivot positions of RREF(A).

A basis of NulA is found by solving the homogenous equation and
decomposing a parameterized solution vector as a linear
combination of vectors weighted by free variables. The vectors in
this sum form a basis of NulA. The nullity of A is thus the
number of free variables for the homogeneous system, which is the
same as the number of non-pivot columns of A.
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Row Space

Definition of the Row Space of a Matrix

Definition

Let A be an m × n matrix. The set of all linear combinations of
the rows of A is called the row space of A.

Since each row of A is a column of At, we often regard the row
space as ColAt ⊆ Rm, though strictly speaking, these are
isomorphic but not equal spaces, and RowA 6⊆ Rm, as it consists
of objects distinct from column vectors. Later, we’ll define the
correct space within which the row space is realized as a subspace.
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Row Space

Row Equivalence and Row Spaces

Theorem

Suppose A ∼ B. Then RowA = RowB. Moreover, if B is in
echelon form, then the nonzero rows of B form a nonzero basis of
both RowB and RowA.

Proof.

Suppose B is obtained from A by row operations.

Then the rows of B are linear combinations of the rows of A, and
thus any linear combination of rows of B is a linear combination of
rows of A, whence RowB ⊆ RowA.

Since elementary row operations are invertible, we can argue
symmetrically that RowA ⊆ RowB, whence RowA = RowB.
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Row Space

Proof (continued.)

If B is in echelon form, then the nonzero rows form a linearly
independent set, as no nonzero row can be made as a linear
combination of the nonzero rows below it.

Equivalently, by transposing, consider that each nonzero row has a
pivot position, and gives a pivot column of Bt.

Thus the nonzero rows of B form a basis of RowB = RowA.
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Row Space

An Example

Example

Find bases of the row space, column space, and null space of the
matrix

A =


1 4 3 2 5
4 8 12 9 0
3 4 9 7 −5
2 8 6 5 6

 .
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Row Space

Example

Using the row operations R2 − 4R1 7→ R2,

R3 − 3R1 7→ R3,
R4 − 2R1 7→ R3, R3 − R2 7→ R3, and R3 ↔ R4, we obtain a row
equivalence

A ∼ B =


1 4 3 2 5
0 −8 0 1 −20
0 0 0 1 −4
0 0 0 0 0


Since B is in echelon form, we deduce that

RowA = Span


î

1 4 3 2 5
ó
,î

0 −8 0 1 −20
ó
,î

0 0 0 1 −4
ó  .
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Row Space

Example

Since B has pivots in the first, second and fourth columns, we
deduce that

ColA = Span




1
4
3
2

 ,


4
8
4
8

 ,


2
9
7
5




To get a basis of the null space we need to continue to row reduce
until we obtain RREF(A), so that we can solve the homogeneous
equation Ax = 0.

The final row operations are R2 − R3 7→ R2, R1 − 2R3 7→ R3, and
1
8R2 7→ R2.
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Row Space

Example

Thus,

RREF(A) = RREF(B) =


1 0 3 0 5
0 1 0 0 2
0 0 0 1 −4
0 0 0 0 0


which implies that the homogenous system has solution

x =


−3s − 5t
−2t
s
4t
t

 = s


−3
0
1
0
0

+ t


5
−2
0
4
1

 .
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Row Space

Example

Thus,

NulA = Span




−3
0
1
0
0

 ,


5
−2
0
4
1




,

and we have that rankA = dimColA = dimRowA = 3 and
nullity A = dimNulA = 2.
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Row Space

A Cautionary Warning about Row Space Basis

Observe in the above example that the first three rows of A are
not a basis of RowA. In particular, they are not even linearly
independent! Indeed, R3 = R2 − R1.

Thus, it is important that you take the rows from the row
equivalent echelon form B to build a basis of the row space. This
is in contrast to the column space basis, which must come from
the original matrix A, and not the echelon form B.

Exercise

Show that though the first three rows of A are not a basis of
RowA, the first, second and fourth rows do form a basis of
RowA. It is always possible to form a basis of the row space using
rows of the original matrix–how does one determine such a basis?
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The Theorem for Matrices

Rank + Nullity = # of Columns

Theorem (The Rank Nullity Theorem)

Let A ∈ Rm×n be any real m × n matrix. Then

dimRowA = rankA = dimColA

and

n = rankA + nullity A .

Proof.

That dimRowA = dimColA = rankA follows from the fact that
RowA = ColAt, every row of A which contains a pivot position
yields both a pivot column of A and a pivot column of At, and the
pivot columns of A span the image of the map T (x) 7→ Ax.
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The Theorem for Matrices

Proof (continued.)

The equality rankT + nullityT = n is just a restatement of the
fact that the number of pivot columns plus the number of
non-pivot columns is equal to the total number of columns.

Indeed, the non-pivot columns are in one-to one correspondence
with vectors in a basis for NulA, and thus the number of
non-pivot columns is just the nullity.

We could use the theory of linear coordinates to prove an analogue
for general linear maps. We state the analogue, but opt to prove it
directly, as the direct proof contains some insights lost in a
coordinate-based proof.
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A Fundamental Theorem of Linear Algebra

Rank-Nullity for General Linear Maps

Theorem (General Rank-Nullity Theorem)

Let V be a finite dimensional F-vector space, and let T : V →W
be a linear map. Then

dimF V = dimF T (V ) + dimF kerT = rankT + nullityT .

Proof.

Since V is finite dimensional, there exists a finite basis B of V .
Moreover, since kerT ⊂ V is a subspace, it is itself a finite
dimensional vector space, and it thus possesses a finite basis.

Let n := dimF V , k = dimF kerT , and r := dimF T (V ). We need
to prove that k + r = n.
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A Fundamental Theorem of Linear Algebra

Proof.

We will prove that we can construct an ordered basis
B = (u1, . . .uk , v1, . . . vr ) of V such that:

1 the set {u1, . . . ,uk} is a basis of kerT , and

2 the set {T (v1), . . .T (vr )} is a basis of the image.

From this it will follow that k + r = n, since dimF V = |B| = k + r .

1. Take any basis
∼
B= {b1, . . .bn} of V and some basis

{u1, . . .uk} of kerT ⊂ V .

Claim

After possibly re-indexing
∼
B, replacing b1 by u1 yields a basis

(u1,b2, . . . ,bn) of V .
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A Fundamental Theorem of Linear Algebra

Proof (continued.)

Since u1 is an element of a basis of kerT , it is nonzero, and so
may be expressed as a nontrivial linear combination of elements of
∼
B: u1 = x1b1 + . . . xnbn. Order

∼
B so that x1 6= 0. We’ll prove the

claim by contradiction.

If the claim is false, then u1 ∈ Span F{b2, . . . ,bn} so there are
n − 1 constants y2 . . . yn ∈ F, not all equal to 0, such that
u1 = y2b2 + . . . + ynbn. Subtracting our two relations gives

0 = x1b1 + (x2 − y2)b2 + . . . + (xn − yn)bn .

Since
∼
B is a basis, this equation can only be true if all of the

coefficients are 0. But x1 6= 0, which gives a contradiction. Thus
the claim is proved.
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Proof (continued.)

The set of elements in
∼
B −{u1} is then a basis of an n − 1

dimensional subspace complimentary to Span F{u1}.

Applying the claim to this subspace, we can replace an element,
such as b2 of

∼
B −{u1} by u2, and so forth. Iterate the process of

replacement of elements of
∼
B by elements ui of the basis of kerT ,

until the ui have been exhausted.

Let B = (u1, . . . ,uk , v1, . . . , vr ) be the resulting ordered basis

where v1, . . . vr are the r = n − k elements of
∼
B that remain after

replacing k elements by the vectors in the basis of the kernel.
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Proof (continued.)

2. It remains to show that the rank is r = n − k by showing that
{T (v1), . . .T (vr )} is a basis of the image. First, observe

T (V ) = Span {T (u1), . . . ,T (uk),T (v1), . . . ,T (vr )}
= Span {0, . . . , 0,T (v1), . . . ,T (vr )}
= Span {T (v1), . . . ,T (vr )}

Thus the set {T (v1), . . .T (vr )} spans the image.

We need to show that this set is linearly independent. We prove
this by contradiction as well.
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Proof (continued.)

Suppose that there is a nontrivial relation
∑r

i=1 aiT (vi ) = 0.

Then

T

(
r∑

i=1

aivi

)
= 0 =⇒

r∑
i=1

aivi ∈ kerT .

Since {u1, . . . ,uk} is a basis of kerT , we then can express the
linear combination of vi s as a linear combination of the ujs:

r∑
i=1

aivi =
k∑

j=1

bjuj .

We thus obtain a relation
a1v1 + . . . + arvr − b1u1 − . . .− bkuk = 0,

and since at least one of the ai s is nonzero, this relation is
nontrivial.
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Proof (continued.)

This contradicts the linear independence of the elements of B, so,
the assumption that there exists a non-trivial linear relation on the
set {Tv1, . . .Tvr} is untenable.

We conclude that {Tv1, . . .Tvr} is a basis of the image, so the
rank is then r . It is therefore clear that n = r + k , so

dimF V = dimF T (V ) + dimF kerT = rankT + nullityT .

Challenge Problem: Use the theory of linear coordinates to give
an alternate proof of the theorem. (Note: one must be careful to
check that various statements made about matrix representatives
of a linear map hold regardless of choices of basis.)
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The Rigidity of Linear Maps

Interpreting Rank-Nullity: Injective Maps

Let’s examine the conceptual consequences of this theorem briefly.

First, note that if a map T : V →W is an injection (one-to one
map) from a finite dimensional vector space V , then the kernel has
dimension 0, and by rank-nullity we have that the dimension of the
image is the same as the dimension of the domain.

In particular, if a linear map is injective, its image is an
“isomorphic copy” of the domain, and one may refer to such maps
as linear embeddings, since we can imagine that we are identifying
the domain with its image as a subspace of the target space.
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The Rigidity of Linear Maps

Interpreting Rank-Nullity: Surjective Maps

If we have a surjective map T : V →W from a finite dimensional
vector space V , then the image has the same dimension as W .

We see that the dimensions then satisfy

dim kerT = dimV − dimW ,

whence we see that the nullity is the difference in the dimensions
of the domain and codomain for a surjective map.

We can interpret this as follows: to cover the space W linearly by
V , we have to squish extra dimensions, nullifying a subspace (the
kernel) whose dimension is complimentary to dimW .
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The Rigidity of Linear Maps

Interpreting Rank-Nullity: Invertible Maps

Finally of course, in a linear isomorphism T : V →W , we have
injectivity and surjectivity, and so in particular we have
nullityT = 0 and dimV = dimW = rankT .

Following the ideas of the proof, we see that for an isomorphism,
the basis has no elements ui coming from a basis of the kernel
(since the kernel is trivial), and that any basis B = (v1, . . . , vn) of
V transforms to a basis T (B) =

Ä
T (v1), . . . ,T (vn)

ä
of W .

Conversely, given a 1 : 1 map of a basis of V to a basis of W , we
get an isomorphism by linear extension, as discussed previously.
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The Rigidity of Linear Maps

Interpreting Rank-Nullity: the General Case

For a general map T : V →W , not necessarily injective or
surjective, we can interpret rank nullity as a statement about
“information loss”.

If an isomorphism, being invertible, perfectly preserves linear
structure, a non-invertible map destroys some information about
its pre-image: nontrivial linear combinations in the domain may
become trivial in the image. In particular, you can imagine that the
map crushes an entire subspace, the kernel, to a point in the image
(since it maps everything in the kernel to 0).

But in a sense, this is the worst thing a linear map can do; the
image is then a subspace with dimension equal to the rank, which
is the difference between the domain’s dimension and the kernel’s
dimension. The pre-image of a point will be an affine subset that
looks like a translation of the kernel.
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The Rigidity of Linear Maps

Examples

Example

Let A be a 10× 7 matrix, and let B be a 10× 12 matrix. What
are the maximum possible ranks for A and B? What’s the
maximum possible rank of AtB?

Solution: The maximum rank of A is 7 and of B is 10. Since AtB
is a 7× 12 matrix, its maximum possible rank is also 7.

Example

Suppose a matrix A has 37 rows and 40 columns. What is the
minimum dimension of NulA?

Solution: We know that rankA ≤ 37, and since
rankA + nullity A = 40, we have that nullity A ≥ 40− 37 = 3.
Thus the minimum dimNulA is 3.
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The Rigidity of Linear Maps

Examples

Example

If, for a 6× 9 matrix A, every solution of the homogenous equation
Ax = 0 can be expressed as rv1 + sv2 + tv3 for linearly
independent v1, v2, v3 ∈ R9, then what can one say about
existence of solutions to Ax = b for any b ∈ R6?

Solution: We can conclude that nullity A = 3, and thus
rankA = 9− 3 = 6, so ColA = R6. Thus for every b ∈ R6, there
is an x such that Ax = b.
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The Rigidity of Linear Maps

Examples

Example

Suppose a system of 3 equations in 4 unknowns has solutions for
all possible choices of constants. Is it possible to find two solutions
of the associated homogeneous system which are not multiples of
each other?

Solution: All solutions of the homogeneous system will be
multiples of each other: the system corresponds to a 3× 4 matrix
of rank 3, and consequently, the null space has dimension
4− 3 = 1, and is thus spanned by a single element.
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Left Null Spaces

Definition of Left Null Space

Definition

The left null space LNulA of an m × n matrix A is the set of all
y ∈ Rm such that ytA = 0. Equivalently, it is the null space of At.

As with row space, one could define the left null space using row
vectors (in this case, 1×m matrixes), in which case, as with row
space, one would regard the left null space as distinct from NulAt,
but isomorphic to it.
The subspace NulAt of Rm is also sometimes called the cokernel
of the map x→ Ax (it is the kernel of the map y→ Aty from Rm

to Rn.)

A. Havens The Relationship between Rank and Nullity



Rank, Nullity, and The Row Space The Rank-Nullity Theorem Interpretation and Applications

Left Null Spaces

Row Space and Left Null Space

Applying rank nullity to At, we see that

dimColAt + dimNulAt = m ,

whence, the dimension of the row space plus the dimension of the
left null space sum to the number of rows of the matrix A:

dimRowA + dimLNulA = m.
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Left Null Spaces

Application: Graph Theory

The relationships between null space, column space, row space,
and left null space appear in the subarea of combinatorics called
graph theory.

By a graph G, we mean a discrete (usually, but not always) finite
set V, called vertices, together with a collection E of unordered
pairs of distinct vertices, called edges. One can visualize graphs as
networks of nodes, possibly connected by line segments.

A directed graph has instead an edge set consisting of ordered
pairs of distinct vertices. Their edges can be understood as having
an assigned direction.

We can describe a finite directed graph G in two ways by a matrix:
with an adjacency matrix, and with an incidence matrix. We’ll
discuss the latter briefly now, and the former later when we study
eigenvalues and eigenvectors.
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Left Null Spaces

Application: Graph Theory

A directed edge e = (vj , vk) ∈ E is said to be incident to the
vertices vj and vk and is said to “leave vj” and to “enter vk”.

Definition

If for a finite graph G = (V, E), |V| = m and |E| = n, the incidence
matrix of G is the m × n matrix I(G) whose (i , j)-th entry is equal
to −1 if the j-th edge leaves the i-th vertex, +1 if the j-th edge
enters the i-th vertex, and 0 if the j-th edge is not incident with
the i-th vertex.

It is not uncommon for the incidence matrix to be defined in such a
way as to be the transpose of our definition, in which case the roles
of the null space and left null space discussed below are reversed.

A. Havens The Relationship between Rank and Nullity



Rank, Nullity, and The Row Space The Rank-Nullity Theorem Interpretation and Applications

Left Null Spaces

Walks and Cycles

We define walks and cycles on graphs before we proceed to
examine the row, column, null and left null spaces of an incidence
matrix.

Definition

A walk on a graph is an alternating sequence of vertices and edges
initiated and terminating in a vertex, with any consecutive
vertex-edge or edge-vertex pair incident.

Thus, a walk can be specified by a sequence of coincident edges. A
walk is called a trail if there are no repeated edges.

A cycle is a walk which returns to the initial vertex, and a simple
cycle is a cycle which is also a trail.
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Left Null Spaces

Simple Cycles and Weights

If G is directed, then a simple cycle of G is associated to a vector
x ∈ Rn, called a weight vector, with components xi ∈ {+1,−1},
such that I(G)x = 0; an edge has positive weight if the cycle
traverses it according to its orientation, and is negative if the edge
is traversed against its orientation.

Simple cycles on a (not necessarily directed) graph are said to be
independent if the corresponding weight vectors are linearly
independent (for some orientations of edges).
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Left Null Spaces

Application: Graph Theory

Viewed as a matrix over R, the subspaces associated to a graph’s
incidence matrix encode interesting topological features.

Claim

Let I(G) be the incidence matrix of a finite directed graph
G = (V, E) with m vertices and n edges.

1 The rank rank I(G) = m − k where k is the number of
connected components of G. In particular, for a connected
graph, k = 1, and rank I(G) = m − 1.

2 If G is connected, then its left null space is spanned by the
vector e1 + e2 + . . . + em. In particular, the column space of
I(G) is the set of all x ∈ Rm perpendicular to
e1 + e2 + . . . + em, and so the sum of components of such x
must be zero.
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Left Null Spaces

Application: Graph Theory

Claim

3 The null space Nul I(G) consists of vectors x ∈ Rn, whose
components, thought of as currents on the corresponding
edges, yield a solution to Kirchhoff’s current law in the
absence of a current source: in matrix form the law reads
Ax = 0. In particular, the dimension of the null space is the
maximum number of independent simple cycles in G.

Challenge Problem: Prove the claim.
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Left Null Spaces

Application: Graph Theory

Let I(G) be the incidence matrix of a connected graph. Then
applying the rank-nullity theorem, we obtain:
the maximum number of independent simple cycles
(= nullity I(G)) + the number of vertices -1 (= rank I(G)) = the
number of edges.

Rearranging:

max(# of indep. simple cycles)−(# of edges)+(# of vertices) = 1

which is called Euler’s formula for a connected graph.
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Left Null Spaces

Example/Exercises

Figure: The directed graph G =(
{v0, v1, v2, v3} , {(v0, v1), (v0, v2), (v0, v3), (v1, v2), (v1, v3), (v2, v3)}

)
.
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Left Null Spaces

Exercises

Exercise

For the figure above, write down an incidence matrix, and find
bases for the column and null spaces.

Verify by hand that there are at most 3 independent cycles by
using the picture.

What if the orientations are altered? Will there always be 3
independent cycles?

What would an acyclic graph look like? Construct some
graphs with 0, 1, 2, and 11 cycles, and check Euler’s graph
formula for each.
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Rank One Matrices and Outer Products

Definition of the Outer Product

Recall, the dot product of two vectors u, v ∈ Rn is given by
u · v = utv. This is called an inner product.

The outer product of two n-vectors is a map from
Rm × Rn → Rm×n:

Definition

Given two vectors u ∈ Rm and v ∈ Rn, their outer product is the
matrix m × n

u⊗ v := uvt =


u1v1 u1v2 . . . u1vn
u2v1 u2v2 . . . u2vn

...
...

. . .
...

umv1 umv2 . . . umvn

 .
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Rank One Matrices and Outer Products

Rank One Matrices are Outer Products

Proposition

The rank of a matrix obtained via an outer product is one, and
moreover any rank one real matrix can be realized as an outer
product. That is, suppose A ∈ Rm×n is a rank one matrix. Then
there exist vectors r ∈ Rn and c ∈ Rm such that

c⊗ r = A .
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Rank One Matrices and Outer Products

Rank One Matrices are Outer Products

Proof.

We’ll show that a rank one matrix is an outer product, and leave
the fact that an outer product has rank one as an exercise.

If A =
î
a1 . . . an

ó
is a rank one matrix, then ColA can be

expressed as the span of a single of its nonzero column vectors, say
c = aj ∈ Rm for some j .

The remaining columns, being also in the column space, are thus
multiples of this column. Let rk be a scalar such that ak = rkc.
Then the vector r ∈ Rn whose k-th component is rk is a vector
such that A = c⊗ r.
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Rank One Matrices and Outer Products
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Rank One Matrices and Outer Products

Example: Projection onto a Line

Example

Let v ∈ Rn. What is the geometric action of the map associated to
the matrix 1

v·vv ⊗ v?

It is the matrix of orthogonal projection onto the line Span {v}.

In particular, if u is a unit vector spanning a line ` then
proj`(x) = (u⊗ u)x = (u · x)u.
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Rank One Matrices and Outer Products
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Rank One Matrices and Outer Products

Example: Projection onto a Line

Example
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Duality and the Row Space

The Dual Space of a Vector Space

Definition

Let V be a vector space over a field F. The dual vector space to V
is the vector space V ∗ of linear functionals f : V → F.

In particular, note that any linear function on Rn has the form
f (x1, . . . , xn) = a1x1 + . . . + anxn = atx. Thus, (Rn)∗ = R1×n.

Thus, the row space of an m × n matrix A is best regarded as the
subspace of (Rm)∗ = R1×m.
Observe that the dual of a finite vector space is isomorphic to the
original vector space (why?)
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Duality and the Row Space

Homework

Homework in MyMathLab for section 4.4 on coordinates is
due Thursday, 4/3.

Wednesday, 4/4, there will be a quiz on sections 4.3-4.6, due
Monday, 4/9.

Homework in MyMathLab for section 4.5 on dimension is due
Tuesday, 4/5.

Exam 2 will be held Tuesday, April 4/10/18,
7:00PM-9:00PM, in Hasbrouck Lab Addition room 124.

The syllabus for the second midterm is the following sections
of the textbook: 2.2, 2.3, 3.1, 3.2, 3.3, 4.1, 4.2, 4.3, 4.4, 4.5.
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