MATH 235-04, Spring 2018
Quiz 5 Solutions

1. Let $\mathrm{A}=\left[\begin{array}{ccccc}7 & 2 & -3 & 0 & -21 \\ -2 & 4 & 10 & 1 & 10 \\ 3 & 0 & -3 & 0 & -9 \\ -1 & 3 & 7 & -5 & -17\end{array}\right]$ and let $S=\left\{\left[\begin{array}{c}1 \\ -2 \\ 1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{c}4 \\ 10 \\ -5 \\ -12 \\ 3\end{array}\right],\left[\begin{array}{c}-5 \\ 4 \\ -2 \\ 4 \\ -1\end{array}\right]\right\}$.
(a) [8 pts] Which vectors in the set S are in the null space of A? What can you conclude about the minimum possible dimension of the null space?
(b) [5 pts] Based on the results of (a), can you conclude whether or not $\mathrm{Ax}=\mathbf{b}$ has a solution for every $\mathbf{b} \in \mathbb{R}^{4}$? If you can draw a conclusion, do so with justification. Otherwise, state what additional information would be necessary to draw a conclusion.
(c) [12 pts] Find bases for Row A, Col A, and Nul A.
(a) Let $\mathbf{v}_{1}=\left[\begin{array}{c}1 \\ -2 \\ 1 \\ -1 \\ 0\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}4 \\ 10 \\ -5 \\ -12 \\ 3\end{array}\right]$ and $\mathbf{v}_{3}=\left[\begin{array}{c}-5 \\ 4 \\ -2 \\ 4 \\ -1\end{array}\right]$. Then after calculating matrix vector products one finds that $\mathrm{Av}_{2}=\mathbf{0}=A \mathbf{v}_{3}$, while $A \mathbf{v}_{1}=-\mathbf{a}_{4}$ where $\mathrm{A}=\left[\begin{array}{lllll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4} & \mathbf{a}_{5}\end{array}\right]$. In fact, $\mathbf{v}_{1}=\mathbf{u}_{1}-\mathbf{e}_{4}$ where \mathbf{u}_{1} is the vector in part (c) below which is one of two vectors found that span the nullspace.

Thus, of the vectors in S, only \mathbf{v}_{2} and \mathbf{v}_{3} are in the null space of A. Note that \mathbf{v}_{1} and \mathbf{v}_{2} are not scalar multiples of each other, whence $\operatorname{dim} \operatorname{Nul} \mathrm{A} \geq 2$.
(b) For $\mathrm{A} \mathbf{x}=\mathbf{b}$ to have a solution for each $\mathbf{b} \in \mathbb{R}^{4}$, the rank must be 4. But since $\operatorname{dim} \operatorname{Nul} \mathrm{A} \geq 2$, by rank-nullity, $\operatorname{rank} \mathrm{A} \leq 5-2=3$. Hence, there exist vectors $\mathbf{b} \in \mathbb{R}^{4}$ for which no $\mathbf{x} \in \mathbb{R}^{5}$ satisfies $\mathrm{Ax}=\mathbf{b}$.
(c) There are row equivalences

$$
\left[\begin{array}{ccccc}
7 & 2 & -3 & 0 & -21 \\
-2 & 4 & 10 & 1 & 10 \\
3 & 0 & -3 & 0 & -9 \\
-1 & 3 & 7 & -5 & -17
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & -3 & -7 & 5 & 17 \\
0 & -2 & -4 & 11 & 44 \\
0 & 0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & 0 & -1 & 0 & -3 \\
0 & 1 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

So, e.g., one can take

$$
\left\{\begin{array}{c}
{\left[\begin{array}{ccccc}
1 & -3 & -7 & 5 & 17
\end{array}\right]} \\
{\left[\begin{array}{ccccc}
0 & -2 & -4 & 11 & 44
\end{array}\right]} \\
{\left[\begin{array}{lllll}
0 & 0 & 0 & 1
\end{array}\right]}
\end{array}\right\}
$$

as a basis of Row A, and

$$
\left\{\left[\begin{array}{c}
7 \\
-2 \\
3 \\
-1
\end{array}\right],\left[\begin{array}{l}
2 \\
4 \\
0 \\
3
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
0 \\
-5
\end{array}\right]\right\}
$$

as a basis of Col A. Finally, from the reduced row echelon form, we have that any \mathbf{x} satisfying $\mathrm{Ax}=\mathbf{0}$ can be written as

$$
\mathbf{x}=\left[\begin{array}{c}
s+3 t \\
-2 s \\
s \\
-4 t \\
t
\end{array}\right]=s \underbrace{\left[\begin{array}{c}
1 \\
-2 \\
1 \\
0 \\
0
\end{array}\right]}_{\mathbf{u}_{1}}+t \underbrace{\left[\begin{array}{c}
3 \\
0 \\
0 \\
-4 \\
1
\end{array}\right]}_{\mathbf{u}_{2}}
$$

whence a basis of Nul A is given by

$$
\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}=\left\{\left[\begin{array}{c}
1 \\
-2 \\
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{c}
3 \\
0 \\
0 \\
-4 \\
1
\end{array}\right]\right\}
$$

Observe that the vectors $\mathbf{v}_{2}, \mathbf{v}_{3} \in S$ given in part (a) satisfy $\mathbf{v}_{2}=-5 \mathbf{u}_{1}+3 . \mathbf{u}_{2}$, $\mathbf{v}_{3}=-2 \mathbf{u}_{1}-\mathbf{u}_{2}$. One could also, knowing that the rank is 3 (given there are 3 pivots in $\operatorname{RREF}(\mathrm{A}))$ and thus that null $\mathrm{A}=\operatorname{dim} \operatorname{Nul} \mathrm{A}=5-3=2$, take $\left\{\mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ as a basis of Nul A, since it is a pair of linearly independent vectors in Nul A, and thus must span Nul A.
2. Let $\mathbb{P}_{n}:=\left\{a_{0}+a_{1} t+\ldots+a_{n} t^{n} \mid a_{0}, \ldots, a_{n} \in \mathbb{R}\right\}$ be the space of real polynomials of degree at most n, where n is a nonnegative integer.
(a) [5 pts] Show that $\mathcal{B}=\left\{1-t+t^{2}-t^{3}, t-t^{2}+t^{3}, t^{2}-t^{3}, t^{3}\right\}$ is a basis of \mathbb{P}_{3}.
(b) [5pts] Let $\mathbf{p}(t)=4 t^{3}+3 t^{2}+2 t+1$. Find the coordinate vector $[\mathbf{p}(t)]_{\mathcal{B}}$ of the polynomial $\mathbf{p}(t)$ in the basis \mathcal{B}.
(c) $[15 \mathrm{pts}]$ Challenge problem (for extra credit):

Let $\mathcal{B}^{\prime}=\left\{1-t+t^{2}-t^{3}+t^{4}, t-t^{2}+t^{3}-t^{4}, t^{2}-t^{3}+t^{4}, t^{3}-t^{4}, t^{4}\right\}$. You may assume this is a basis of \mathbb{P}_{4}. Let $\mathcal{I}: \mathbb{P}_{3} \rightarrow \mathbb{P}_{4}$ be the map given by

$$
\mathcal{I}[\mathbf{p}(t)]=\int_{0}^{t} \mathbf{p}(\tau) \mathrm{d} \tau
$$

Find a matrix $\mathrm{A}_{\mathcal{B}, \mathcal{B}^{\prime}}$ representing the map \mathcal{I} in the \mathcal{B} and \mathcal{B}^{\prime} coordinates, i.e., find a matrix $\mathrm{A}_{\mathcal{B}, \mathcal{B}^{\prime}}$ such that

$$
[\mathcal{I}[\mathbf{p}(t)]]_{\mathcal{B}^{\prime}}=\mathrm{A}[\mathbf{p}(t)]_{\mathcal{B}} .
$$

(a) Let $\mathbf{p}_{1}(t)=1-t+t^{2}-t^{3}, \mathbf{p}_{2}(t)=t-t^{2}+t^{3}$, $\mathbf{p}_{3}(t)=t^{2}-t^{3}$, and $\mathbf{p}_{4}(t)=t^{3}$. Let $\mathcal{B}_{S}=\left(1, t, t^{2}, t^{3}\right)$ be the ordered standard monomial basis of \mathbb{P}_{3}. Then note that the matrix

$$
\mathrm{B}=\left[\begin{array}{llll}
{\left[\mathbf{p}_{1}(t)\right]_{\mathcal{B}_{S}}} & {\left[\mathbf{p}_{2}(t)\right]_{\mathcal{B}_{S}}} & {\left[\mathbf{p}_{3}(t)\right]_{\mathcal{B}_{S}}} & {\left[\mathbf{p}_{4}(t)\right]_{\mathcal{B}_{S}}}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
1 & -1 & 1 & 0 \\
-1 & 1 & -1 & 1
\end{array}\right] .
$$

Since $\operatorname{RREF}(B)=I_{4}$, the columns are linearly independent, whence the set \mathcal{B} of polynomials is a linearly independent set. Since \mathcal{B} is a set of four linearly independent polynomials in \mathbb{P}_{3} and $\operatorname{dim} \mathbb{P}_{3}=4, \mathbb{P}_{3}=\operatorname{span} \mathcal{B}$, so \mathcal{B} forms a basis.
(b) To find $[\mathbf{p}(t)]_{\mathcal{B}}$ it is easiest to work instead with standard monomial coordinates. Note that for the matrix B in part (a) above, we have

$$
\mathrm{B}[\mathbf{p}(t)]_{\mathcal{B}}=[\mathbf{p}(t)]_{\mathcal{B}_{S}} \Longrightarrow[\mathbf{p}(t)]_{\mathcal{B}}=\mathrm{B}^{-1}[\mathbf{p}(t)]_{\mathcal{B}_{S}} .
$$

One can equivalently solve the corresponding system which has augmented matrix

$$
\left[\begin{array}{cccc|c}
1 & 0 & 0 & 0 & 1 \\
-1 & 1 & 0 & 0 & 2 \\
1 & -1 & 1 & 0 & 3 \\
-1 & 1 & -1 & 1 & 4
\end{array}\right]
$$

This yields a solution

$$
[\mathbf{p}(t)]_{\mathcal{B}}=\left[\begin{array}{c}
1 \\
3 \\
5 \\
7
\end{array}\right]
$$

which corresponds to the fact that $\mathbf{p}(t)=\mathbf{p}_{1}(t)+3 \mathbf{p}_{2}(t)+5 \mathbf{p}_{3}(t)+7 \mathbf{p}_{4}(t)$, as can be seen quickly upon observing that $1=\mathbf{p}_{1}(t)+\mathbf{p}_{2}(t), t=\mathbf{p}_{2}(t)+\mathbf{p}_{3}(t), t^{2}=\mathbf{p}_{3}(t)+\mathbf{p}_{4}(t)$ and $t^{3}=\mathbf{p}_{4}(t)$. These (fairly obvious) relations correspond to the columns of the inverse matrix

$$
\mathrm{B}^{-1}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

(c) The challenge problem solutions are being withheld, so that students may continue to submit solutions. If you believe you have a solution, you may turn it in, or come present it to me in office hours, anytime before the last day of classes.

