MATH 235-04, Spring 2018
Quiz 4 Solutions

1. Let $\mathcal{U}^{3 \times 3} \subset \mathbb{R}^{3 \times 3}$ denote the set of all upper triangular 3×3 matrices, which are 3×3 matrices $\mathrm{A}=\left(a_{i j}\right)$ such that the entries a_{21}, a_{31} and a_{32} are all 0 .
(a) [5 pts$]$ Show that $\mathcal{U}^{3 \times 3}$ is a vector subspace of the vector space $\mathbb{R}^{3 \times 3}$ of 3×3 matrices.
(b) [5pts] Compute the dimension of $\mathcal{U}^{3 \times 3}$ by exhibiting an explicit basis. For full credit you must argue that you your answer is a basis: show it spans $\mathcal{U}^{3 \times 3}$ and is linearly independent.
(c) [5pts] Provide an explicit isomorphism from $\mathcal{U}^{3 \times 3}$ to the subspace of lower triangular matrices $\mathcal{L}^{3 \times 3}$. Note this is a subspace by arguments like those of part (a). For full credit you must argue that the map you provide is an isomorphism: show it is linear and invertible.
(a) Observe that $\mathcal{U}^{3 \times 3}=\left\{\left.\left[\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33}\end{array}\right] \right\rvert\, a_{i j} \in \mathbb{R}, i, j=1,2,3\right\}$.

Let $\mathrm{A}=\left[\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33}\end{array}\right], \mathrm{B}=\left[\begin{array}{ccc}b_{11} & b_{12} & b_{13} \\ 0 & b_{22} & b_{23} \\ 0 & 0 & b_{33}\end{array}\right]$, and let $s \in \mathbb{R}$ be any scalar. Then note

$$
s \mathrm{~A}+\mathrm{B}=\left[\begin{array}{ccc}
s a_{11}+b_{11} & s a_{12}+b_{12} & s a_{13}+b_{13} \\
0 & s a_{22}+b_{22} & s a_{23}+b_{23} \\
0 & 0 & s a_{33}+b_{33}
\end{array}\right] \in \mathcal{U}^{3 \times 3} .
$$

This shows that $\mathcal{U}^{3 \times 3}$ is a subspace, by the subspace test. One could also directly verify that $\mathbf{0} \in \mathcal{U}^{3 \times 3}$ and that $\mathcal{U}^{n \times n}$ is closed under addition and scaling, but our above test demonstrates these facts simultaneously.
(b) Let $\mathrm{E}_{i j}$ be the 3×3 matrix with all entries equal to zero, save the (i, j)-th entry, which is 1 . Using matrix addition a generic matrix $\mathrm{A} \in \mathcal{U}^{3 \times 3}$ can be expressed as

$$
\mathrm{A}=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22} & a_{23} \\
0 & 0 & a_{33}
\end{array}\right]=a_{11} \mathrm{E}_{11}+a_{12} \mathrm{E}_{12}+a_{13} \mathrm{E}_{13}+a_{22} \mathrm{E}_{22}+a_{23} \mathrm{E}_{23}+a_{33} \mathrm{E}_{33} .
$$

This establishes that $\mathcal{U}^{3 \times 3}=\operatorname{span}_{\mathbb{R}}\left\{\mathrm{E}_{i j} \mid i, j \in\{1,2,3\}, i \leq j\right\}$.
The zero matrix $\mathbf{0}_{3 \times 3}$ is uniquely expressed by setting all coefficients $a_{i j}, 1 \leq i \leq j \leq 3$ equal to 0 . Thus, the set $\mathcal{B}_{\mathcal{U}}:=\left\{\mathrm{E}_{i j} \mid i, j \in\{1,2,3\}, i \leq j\right\}$ is a basis of $\mathcal{U}^{3 \times 3}$, and consequently we can conclude that $\operatorname{dim} \mathcal{U}^{3 \times 3}=6$.

Finally, I will remark that this idea easily generalizes to describe $\mathcal{U}^{n \times n}$ or $\mathcal{L}^{n \times n}$, the subspaces of upper, respectively, lower triangular $n \times n$ real matrices. E.g., for $\mathcal{U}^{n \times n}$ one obtains a basis

$$
\mathcal{B}_{\mathcal{U}}=\left\{\mathrm{E}_{i j} \mid i, j \in\{1, \ldots, n\}, i \leq j\right\},
$$

from which we can conclude $\operatorname{dim} \mathcal{U}^{n \times n}=\frac{1}{2} n(n+1)$. Reversing the inequality on indices gives us a basis of the subspace of lower triangular matrices $\mathcal{L}^{n \times n}$.
(c) Observe that

$$
\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22} & a_{23} \\
0 & 0 & a_{33}
\end{array}\right]^{\mathrm{t}}=\left[\begin{array}{ccc}
a_{11} & 0 & 0 \\
a_{12} & a_{22} & 0 \\
a_{13} & a_{23} & a_{33}
\end{array}\right] \in \mathcal{L}^{3 \times 3}
$$

Since $\left(A^{t}\right)^{t}=A$, this map is invertible. Thus, we only need to show that the transpose is linear to confirm that it provides an isomorphism $\mathcal{U}^{3 \times 3} \cong \mathcal{L}^{3 \times 3}$.
Generally writing $\mathrm{A}=\left(a_{i j}\right)$, and $\mathrm{A}^{\mathrm{t}}=\left(a_{j i}\right)$, observe that for any matrices A, B in $\mathbb{R}^{3 \times 3}$ and any scalar $s \in \mathbb{R}$

$$
(s \mathrm{~A}+\mathrm{B})^{\mathrm{t}}=\left(s\left(a_{i j}\right)+b_{i j}\right)=\left(\left(s a_{i j}\right)+\left(b_{i j}\right)\right)^{\mathrm{t}},
$$

the (i, j)-th entry of which is the (j, i)-th entry of $\left(\left(s a_{i j}\right)+\left(b_{i j}\right)\right)$, namely, $\left(\left(s a_{j i}\right)+\left(b_{j i}\right)\right)=$ $s \mathrm{~A}^{\mathrm{t}}+\mathrm{B}^{\mathrm{t}}$, whence $(s \mathrm{~A}+\mathrm{B})^{\mathrm{t}}=s \mathrm{~A}^{\mathrm{t}}+\mathrm{B}^{\mathrm{t}}$. This establishes linearity of the transpose, and thus we have that $\bullet^{t}: \mathcal{U}^{3 \times 3} \rightarrow \mathcal{L}^{3 \times 3}$ is a linear isomorphism with inverse the transpose map $\bullet^{\mathrm{t}}: \mathcal{L}^{3 \times 3} \rightarrow \mathcal{U}^{3 \times 3}$.
One could construct many other isomorphisms, e.g., by specifying any basis of $\mathcal{L}^{3 \times 3}$ and then mapping the basis from part (b) onto the basis of $\mathcal{L}^{3 \times 3}$, and extending by linearity. Observe that if one specifies a basis $\mathcal{B}_{\mathcal{L}}$ of $\mathcal{L}^{3 \times 3}$ as a sub-basis of the standard basis \mathcal{B}_{S} of $\mathbb{R}^{3 \times 3}$, then by choosing the order appropriately in constructing the bijection $\mathcal{B}_{\mathcal{U}} \rightarrow \mathcal{B}_{\mathcal{L}}$, the associated isomorphism will just be the transpose map.

