MATH 235-04, Spring 2018
Quiz 1 Solutions

1. For the vectors below, construct an equation of the form $A \mathbf{x}=\mathbf{b}$. Then solve for \mathbf{x} and exhibit \mathbf{b} as a linear combination of the vectors $\mathbf{a}_{1}, \mathbf{a}_{2}$, and \mathbf{a}_{3} (which may be regarded as the columns of the matrix A).

$$
\mathbf{a}_{1}=\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right] \quad \mathbf{a}_{2}=\left[\begin{array}{c}
-1 \\
1 \\
-1
\end{array}\right] \quad \mathbf{a}_{2}=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{c}
2 \\
-3 \\
-2
\end{array}\right]
$$

You must list or show any row operations performed for full credit, and clearly mark your final answer giving \mathbf{b} in terms of the vectors $\mathbf{a}_{1}, \mathbf{a}_{2}$, and \mathbf{a}_{3}.

The matrix A will have $\mathbf{a}_{1}, \mathbf{a}_{2}$, and \mathbf{a}_{3} as its columns, hence we can write a matrix vector equation of the form

$$
\mathbf{A} \mathbf{x}=\left[\begin{array}{ccc}
0 & -1 & 1 \\
-1 & 1 & -1 \\
1 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
2 \\
-3 \\
-2
\end{array}\right]=\mathbf{b}
$$

We can convert this into a system:

$$
\begin{aligned}
{\left[\begin{array}{ccc}
0 & -1 & 1 \\
-1 & 1 & -1 \\
1 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] } & =\left[\begin{array}{c}
-x_{2}+x_{3} \\
-x_{1}+x_{2}-x_{3} \\
x_{1}-x_{2}
\end{array}\right]=\left[\begin{array}{c}
2 \\
-3 \\
-2
\end{array}\right] \\
& \Longleftrightarrow\left\{\begin{aligned}
0 x_{1}-x_{2}+x_{3} & =2 \\
-x_{1}+x_{2}-x_{3} & =-3 \\
x_{1}-x_{2}+0 x_{3} & =-2
\end{aligned}\right.
\end{aligned}
$$

This corresponds to an augmented matrix

$$
[\mathrm{A} \mid \mathbf{b}]=\left[\begin{array}{ccc|c}
0 & -1 & 1 & 2 \\
-1 & 1 & -1 & -3 \\
1 & -1 & 0 & -2
\end{array}\right]
$$

We can row reduce this by the following series of row operations:

1. $R_{1} \leftrightarrow R_{3}$
2. $R_{2}+R_{1} \mapsto R_{2}$
3. $R_{2} \leftrightarrow R_{3}$
4. $-R_{2} \mapsto R_{2}$
5. $-R_{3} \mapsto R_{3}$
6. $R_{2}+R_{3} \mapsto R_{2}$
7. $R_{1}+R_{2} \mapsto R_{1}$

This yields

$$
\operatorname{RREF}([\mathrm{A} \mid \mathbf{b}])=\left[\begin{array}{lll|l}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 5
\end{array}\right]
$$

which implies that

$$
\mathbf{x}=\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]
$$

and

$$
\mathbf{b}=A \mathbf{x}=\mathbf{a}_{1}+3 \mathbf{a}_{2}+5 \mathbf{a}_{3},
$$

which is easily checked using the rules for vector scaling and vector addition.
Observe that one could reorder the columns of A in order to avoid some of the row swaps (since the order in which vectors appear in the linear combination constructing \mathbf{b} doesn't matter, since vector addition is commutative), but then one has to be careful to assign the correct scalar weights to each of $\mathbf{a}_{1}, \mathbf{a}_{2}$, and \mathbf{a}_{3} when writing \mathbf{b} as a linear combination of $\mathbf{a}_{1}, \mathbf{a}_{2}$, and \mathbf{a}_{3} from the solution $\left(x_{1}, x_{2}, x_{3}\right)$ to the system with the permuted columns.

