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The Standard Basis of Rn

Components Revisited

Observe that any x ∈ R2 can be written as a linear combination of
vectors along the standard rectangular coordinate axes using their
components relative to this standard rectangular coordinate
system:

x =

ñ
x1
x2

ô
= x1

ñ
1
0

ô
+ x2

ñ
0
1

ô
.

These two vectors along the coordinate axes will form the standard
basis for R2.
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The Standard Basis of Rn

Elementary Vectors

Definition

The vectors along the standard rectangular coordinate axes of R2

are denoted

e1 :=

ñ
1
0

ô
, e2 :=

ñ
0
1

ô
.

They are called elementary vectors (hence the notation ei ,
i = 1, 2), and the ordered list (e1, e2) is called the standard basis
of R2.

Observe that Span {e1, e2} = R2.
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The Standard Basis of Rn

Elementary Vectors

We can also define elementary vectors and a standard basis in Rn,
by taking the unit vectors along the n different coordinate axes of
the standard rectangular coordinate system:

Definition

The n vectors

e1 :=


1
0
0
...
0

 , e2 :=


0
1
0
...
0

 , . . . , en−1 :=


0
...
0
1
0

 , en :=


0
...
0
0
1


are called elementary vectors for the standard rectangular
coordinate system on Rn.
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The Standard Basis of Rn

A Remark on Notation

Remark

Note that we use the symbols e1, e2, . . . to respectively represent
the first, second, etc elementary vectors in whatever real vector
space we are working in, indexed with respect to the order of our
coordinate axes.

The number of components necessary to represent a given ei
depends on the particular Rn with which we are working, and will
be clear from context.

Thus, the notation ei always refers to a vector with a 1 in the ith
component, but the vector may have however many zeroes we
need.
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The Standard Basis of Rn

The Standard Basis of Rn

Observation

Clearly, the set {e1, . . . , en} ⊂ Rn is linearly independent, as the
matrix [e1 . . . en] has precisely n columns and n pivots.

Definition

The ordered n-tuple of vectors (e1, . . . , en) is called the standard
basis of Rn.

Observe that x =
n∑

i=1

xiei =⇒ Span {e1, . . . , en} = Rn.

Therefore in analogy to the case of R2, the n-tuple (e1, . . . , en)
earns the title of a basis because it is an ordered, linearly
independent collection of vectors that spans the whole of Rn.
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The Standard Basis of Rn

RREF and the Standard Basis

Observation

Given a collection of n linearly independent vectors v1 , . . . , vn, the
matrix with these vectors as columns has

RREF[v1 . . . vn] = [e1 . . . en] =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 . . . 0 1

 .

Thus, any n × n matrix whose columns are linearly independent is
row equivalent to the matrix whose columns are the standard basis.
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Finding Matrices Representing Linear Maps

Matrix Representations

Definition

Given a linear map T : Rn → Rm, we will say that an m× n matrix
A is a matrix representing the linear transformation T if the image
of a vector x in Rn is given by the matrix vector product

T (x) = Ax .

Our aim is to find out how to find a matrix A representing a linear
transformation T . In particular, we will see that the columns of A
come directly from examining the action of T on the standard
basis vectors.

Before we state the formal result, let us consider a simple two
dimensional reflection, and try to represent it as a matrix-vector
product.
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Finding Matrices Representing Linear Maps

An Example

Example

Find the matrix representing the map M : R2 → R2 that reflects a
vector x through the line Span {e1 + e2}.

First, note that

e1 + e2 =

ñ
1
1

ô
,

so Span {e1 + e2} is the solution set of the linear equation
x1 − x2 = 0, i.e., it is the line x1 = x2. You should convince
yourself that reflection through this line swaps the vectors e1 and
e2, and in general acts on a vector by swapping its components.
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Finding Matrices Representing Linear Maps

An Example

Example

So M(e1) = e2 and M(e2) = e1. If we consider an arbitrary
2-vector x = x1e1 + x2e2, it is easy to check that because M is
linear and swaps the elementary vectors, M must swap the
components of x.

Indeed by linearity
M(x) = M(x1e1 + x2e2) = x1M(e1) + x2M(e2) = x1e2 + x2e1.
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Finding Matrices Representing Linear Maps

An Example

Example

Comparing the image

M(x) =

ñ
x2
x1

ô
with ñ

a b
c d

ô ñ
x1
x2

ô
=

ñ
ax1 + bx2
cx1 + dx2

ô
we see thatñ

x2
x1

ô
=

ñ
0x1 + 1x2
1x1 + 0x2

ô
=

ñ
0 1
1 0

ô ñ
x1
x2

ô
.
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Finding Matrices Representing Linear Maps

An Example

Example

So we can represent the reflection map x 7→ M(x) by the
matrix-vector product map

M(x) =

ñ
0 1
1 0

ô
x = [e2 e1]x .

It is not a coincidence that the matrix of M is
[e2 e1] = [M(e1) M(e2)]!

Indeed, consider the matrix vector product Aei for an arbitrary
m × n matrix A and ei the ith elementary vector of the standard
basis of Rn. What is the vector Aei?
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Finding Matrices Representing Linear Maps

Selecting the Matrix Columns

Since ei has a one in the ith coordinate, and zeroes in all other
coordinates, we deduce that Aei is the linear combination

0a1 + . . .+ 0ai−1 + 1a1 + 0ai+1 + . . .+ 0an = ai ,

that is, Aei is just the ith column of A.

If T is some linear map, and A is a matrix representing it, then we
can deduce that the image of an elementary vector ei under the
map T is T (ei ) = ai , so the columns of the matrix are precisely
the images of the standard basis by the map T !
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Finding Matrices Representing Linear Maps

The Theorem

Theorem

A linear transformation T : Rn → Rm may be uniquely represented
as a matrix-vector product T (x) = Ax for the m × n matrix A
whose columns are the images of the standard basis (e1, . . . , en) of
Rn by the transformation T . Specifically, the ith column of A is
the vector T (ei ) ∈ Rm and

T (x) = Ax =
î
T (e1) T (e2) . . . T (en)

ó
x .
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Finding Matrices Representing Linear Maps

A Satisfying, Simple Proof

Proof.

The result is a consequence of the calculation

T (x) = T
Ä∑n

i=1xiei
ä

=
∑n

i=1xiT (ei )

=
î
T (e1) T (e2) . . . T (en)

ó
x =: Ax ,

where the first equality follows from the representation of x in the
standard basis, the second equality follows from properties of
linearity, and the third equality follows from the definition of the
matrix vector product Ax as being the linear combination of
column vectors of A taking the components xi as the weights.
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Finding Matrices Representing Linear Maps

Using this Result

There are two ways in which this result is useful:

Given a linear map described geometrically, one can examine
its effect on basis elements ei and then describe the matrix
representing the map,

Given a matrix, one can try to understand the geometry of the
map x 7→ Ax by examining the columns, and understanding
how the matrix acts on the frame (e1, . . . , en).

The first use is quite practical and appears in many applications.
The second use, while occasionally practical, is better viewed as a
conceptual framework for understanding the geometry of linear
maps when given their matrices; it is typically quite impractical to
actually grasp the meaning of a linear map from its representing
matrix whenever the matrix is large.
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Finding Matrices Representing Linear Maps

Envisioning the Effect of a Matrix

To envision how the matrix acts on the frame (e1, . . . , en), imagine
the basis vectors like a rigid collection of unit length rods, making
right angles with each other and aligned with coordinate axes,
emanating from the origin of Rn.

The map x 7→ Ax then contorts, bends, rotates, collapses and/or
shoves this frame onto a new collection of vectors, the columns of
A, sitting in Rm.

The rigidity of the condition that the map is linear means that
linear combinations, built via the frame, must map to the correctly
weighted linear combinations of the frame vectors’ images. This is
conceptually why specifying just the image of this standard basis
frame determines the effect on arbitrary vectors.
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Finding Matrices Representing Linear Maps

Some Useful Exercises

Go back through the examples of linear transformations, such
as rotations, projections, and similarity transformations, given
in the previous lectures on linear maps. For these examples,
try to use the theorem to justify any given matrix
representations via geometry, to find general matrix
representations when they were not given, and to understand
the geometry of transformations given by matrices previously
encountered in recent lectures.

Pay particular attention to rotations and reflections in two
dimensions. You should become comfortable recognizing
matrices that accomplish these transformations, and you
should be able to construct a rotation or reflection matrix
given sufficient information (such as an angle of rotation, and
either a vector or an angle specifying the line of reflection).
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Reframing via Linear Transformations

Existence Questions and Images

Given a system Ax = b, what is the connection between the
existence of a solution x and the linear transformation
T : Rn → Rm given by T (x) = Ax?

If a solution exists for some b, that means there is some x ∈ Rn

such that T (x) = b. Thus, we can rephrase the question of
existence of solutions as follows: given a linear map T : Rn → Rm

represented by an m × n matrix A, and a vector b ∈ Rm, is
b ∈ T (Rn), i.e., is b in the image of the map T?

An affirmative answer implies there exists at least one x, a
pre-image of b, which solves the system Ax = b.

A negative answer implies the system Ax = b is inconsistent.

A. Havens Linear Transformations and Matrix Algebra



Representing Linear Maps with Matrices Existence/Uniqueness Redux Matrix Algebra

Reframing via Linear Transformations

Existence and Pre-Images

Formally, define the pre-image of a vector b ∈ Rm under a map
T : Rn → Rm by

T−1(b) = {x ∈ Rn|T (x) = b} .

Let T (x) = Ax be a linear transformation. Then a solution to
Ax = b always exists (for any b) if and only if for every b ∈ Rm,
the cardinality of the pre-image of b is at least 1: |T−1(b)| ≥ 1.
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Reframing via Linear Transformations

Uniqueness Questions And Kernels

Suppose for a given m × n matrix A and a given vector b ∈ Rm,
system Ax = b is consistent, so b ∈ T (x) where T (x) = Ax is the
corresponding linear transformation from Rn to Rm.

The uniqueness question concerns whether there is only one
solution x such that Ax = b, or infinitely many. This corresponds
to asking whether the pre-image of b contains more than one
element.

For example, if b = 0, then the system is homogenous. Any
nontrivial solution would imply that the solution is not unique.
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Reframing via Linear Transformations

Uniqueness Questions And Kernels

Recall the notion of the kernel of the map x 7→ Ax: the kernel is
precisely the pre-image of the zero vector. For any linear map
T : Rn → Rm, let

kerT := T−1(0) = {x ∈ Rn|T (x) = 0} .

The kernel is called trivial if it contains only the zero vector, i.e.,
kerT = {0}.

Then observe that the homogeneous system T (x) = Ax = 0 has
nontrivial solutions if and only if if the kernel is nontrivial.
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Reframing via Linear Transformations

Kernels and Inhomogeneous Systems

But, the solution to an inhomogeneous system is constructed by
finding a particular solution, and then adding solutions of the
homogeneous system, i.e., adding elements of the kernel of the
map x 7→ Ax.

It thus follows that if kerT is nontrivial, the corresponding system
Ax = b has nontrivial solutions provided b is in the image of T .

So the question of uniqueness may be rephrased in terms of the
cardinality of the pre-image T−1(b) of the vector b by the map
T (x) = Ax. And this in turn is equivalent to the question of
whether the kernel of T is trivial.

We recall two ideas about functions, before collecting answers to
our existence and uniqueness questions.
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Surjectivity, or Onto Maps

Defining Surjectivity

Definition

A function f : X → Y (not necessarily linear) is called surjective or
onto if for every y ∈ Y there exists at least one x ∈ X such that
y = f (x).
Equivalently, the function f is surjective if and only if the
cardinalities of all pre-images are at least 1, i.e. for every y ∈ Y ,
|f −1(y)| ≥ 1.

Intuitively, an onto map covers the codomain, i.e., the whole
codomain is the image: f (X ) = Y .
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Injectivity, or One-To-One Maps

Defining Injectivity

Definition

A function f : X → Y (not necessarily linear) is called injective or
one-to-one if and only if whenever two images f (x1), f (x2) are
equal, the corresponding inputs x1 and x2 are also equal.
Equivalently, f is injective/one-to-one if and only if whenever two
domain elements x1 and x2 are distinct, the corresponding images
f (x1) and f (x2) are distinct.
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Injectivity, or One-To-One Maps

Injectivity and Pre-Images

Intuitively, a one-to-one function is one which “never repeats an
output”.

That is, distinct inputs always produce distinct outputs for an
injective function. Another way to understand injectivity is to
consider pre-images: all of the pre-images of an injective function
contain at most one point.

Thus f : X → Y is injective if and only if
x1 6= x2 =⇒ f (x1) 6= f (x2), if and only if for every y ∈ Y , the
cardinality of the pre-image f −1(y) = {x ∈ X |y = f (x)} satisfies
|f −1(y)| ≤ 1.
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Theorems on Existence and Uniqueness

Existence and Surjectivity

Theorem

A linear map T : Rn → Rm given by T (x) = Ax is surjective if and
only if the columns of A span Rm.

The system Ax = b has a solution for every b in Rm if and only if
the map T (x) = Ax is surjective.
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Theorems on Existence and Uniqueness

Uniqueness and Injectivity

Theorem

A linear map T : Rn → Rm is injective if and only if T (x) = 0 only
admits the trivial solution, i.e., if and only if kerT = {0}.

If T (x) = Ax, the system Ax = b has a unique solution if and only
if T is injective, i.e., if and only if the kernel is trivial.

The kernel of T is trivial if and only if the columns of the
representative matrix A are linearly independent.
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Theorems on Existence and Uniqueness

An Example

Example

Consider the map T : R3 → R3 given by T (x) = Ax, where

A =

 0 e π√
2 0 1

0 −e π

 .

Is the map surjective? What does this say about solutions to
Ax = b for arbitrary b ∈ R3?

Is this map injective? What does this say about uniqueness of
solutions to Ax = b?
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Theorems on Existence and Uniqueness

An Example

Example

The map is both injective and surjective: we previously showed
that RREF(A) = I3, the 3× 3 identity matrix.

Since there are three pivots, one in each column, the columns of A
are linearly independent, so they are not coplanar. They thus span
R3, which proves surjectivity.

Since the map T is surjective, any b ∈ R3 is in the image of T ,
whence, Ax = b is solvable.

Since the columns are linearly independent, kerT is trivial, and any
system Ax = b is in fact uniquely solved.
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Composition of Maps and Matrix Multiplication

Composition

Suppose we wanted to compose a pair of linear maps induced by
matrix multiplication:

Rk TB−→ Rn TA−→ Rm ,

where B is the n × k matrix representing TB and A is the m × n
matrix representing TA. Let TAB = TA ◦ TB denote the
composition obtained by first applying TB and then applying TA.

You should work out that this composition is indeed also a linear
map.
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Composition of Maps and Matrix Multiplication

Composition

We know that we should be able to represent this composition by a
matrix map. Our theorem for building such matrices representing
linear transformations tells us that if we track what happens to the
standard basis through the two maps building the decomposition,
we will know the columns of the matrix representing the
decomposition.

It turns out we can, and the corresponding matrix can be though
of as a matrix product of A and B. Let us do an example before
defining this product in full generality.
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Composition of Maps and Matrix Multiplication

An Example

Example

Let A =

ñ
3 2 1
6 5 4

ô
, and B =

 1 2
3 4
5 6

 .

Thus, TA : R3 → R2 is given by TAy = Ay and TB : R2 → R3 is
given by TBx = Bx.

Given x =

ñ
x1
x2

ô
∈ R2, the map TAB : R2 → R2 sends x to

A(Bx). Let y = Bx.
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Composition of Maps and Matrix Multiplication

An Example

Example

Then y =

 1 2
3 4
5 6

 ñ x1
x2

ô
=

 x1 + 2x2
3x1 + 4x2
5x1 + 6x2

 .

We can then compute TABx = Ay:

Ay = A(Bx) =

ñ
3 2 1
6 5 4

ô x1 + 2x2
3x1 + 4x2
5x1 + 6x2


=

ñ
3(x1 + 2x2) + 2(3x1 + 4x2) + (5x1 + 6x2)

6(x1 + 2x2) + 5(3x1 + 4x2) + 4(5x1 + 6x2)

ô
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Composition of Maps and Matrix Multiplication

An Example

Example

Carrying on the computation, we find that the composition is given
by

TABx =

[ Ä
3(1) + 2(3) + 1(5)

ä
x1 +

Ä
3(2) + 2(4) + 1(6)

ä
x2Ä

6(1) + 5(3) + 4(5)
ä
x1 +

Ä
6(2) + 5(4) + 4(6)

ä
x2

]

=

ñ
3(1) + 2(3) + 1(5) 3(2) + 2(4) + 1(6)
6(1) + 5(3) + 4(5) 6(2) + 5(4) + 4(6)

ô ñ
x1
x2

ô
=

ñ
14 20
41 56

ô ñ
x1
x2

ô
=

ñ
14x1 + 20x2
41x1 + 56x2

ô
.
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Composition of Maps and Matrix Multiplication

An Example

Example

Observe that the matrix in the penultimate line above is obtained
by forming dot products from the row vectors of A with the
column vectors of B to obtain each entry. This is how we will
define matrix multiplication in general: we treat the columns of the
second matrix as vectors, and compute matrix-vector products in
order to obtain new column vectors.
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Composition of Maps and Matrix Multiplication

Defining the Matrix Product

Definition

Suppose we have linear maps

Rk TB−→ Rn TA−→ Rm ,

represented respectively by a n × k matrix B and an m × n matrix
A.

Let TAB = TA ◦ TB : Rk → Rm denote the composition obtained
by first applying TB and then applying TA.

Then there is an m × k matrix M such that TABx = Mx for any
x ∈ Rk , and we define the matrix product of A and B to be the
matrix AB := M.
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Composition of Maps and Matrix Multiplication

Defining the Matrix Product

Definition

In particular, M = (mij) is the matrix whose entries are given by
the formula

mij =
n∑

l=1

ailblj ,

where ail is the ith element of the lth column al of A (which is the
lth element of the ith row of A), and blj is the lth element of the
jth column bj of B.

Thus, the jth column of M = AB is precisely the matrix-vector
product Abj where bj is the jth column of B:

AB =
î
Ab1 . . . Abk

ó
.
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Composition of Maps and Matrix Multiplication

Compatibility

Observation

For the product to be defined, the number of columns of the first
matrix must match the number rows of the second matrix. In
particular, if A is an m × n matrix and B is an n × k, then AB is
well defined, but BA is well defined if and only if k = m.

The final size has the same number of rows (m) as A and the
same number of columns (k) as B.
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Composition of Maps and Matrix Multiplication

Non-Commutativity

Remark

The above observation implies that there are pairs matrices A and
B such that AB is defined while the product in reverse order BA is
not defined.

If both products are defined, they need not be equal, and indeed,
may even have different sizes. E.g., if A is a 2×3 matrix and B is a
3× 2 matrix, then AB is a 2× 2 matrix, but BA is a 3× 3 matrix!

For square matrices of the same dimensions, the product is defined
in either order, and returns a square matrix of the same size.

But the results of such a product still need not be equal, as the
following example shows.
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Composition of Maps and Matrix Multiplication

An example of Non-Commuting Square matrices

Example

Consider the following matrices:ñ
1 2
0 1

ô
,

ñ
0 −1
1 0

ô
.

We compute the products in each order:ñ
1 2
0 1

ô ñ
0 −1
1 0

ô
=

ñ
2 −1
1 0

ô
ñ

0 −1
1 0

ô ñ
1 2
0 1

ô
=

ñ
0 −1
1 2

ô
.
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Composition of Maps and Matrix Multiplication

Identity

There is a distinguished n × n identity matrix In such that for any
m × n matrix A, AIn = A and for any n × k matrix B, InB = B.

This matrix consists of entries δij which are 1 if i = j and 0 if i 6= j :

In =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 . . . 0 1

 .

Clearly, for any vector x ∈ Rn, Inx = x, whence it also acts as an
identity for matrix-vector multiplication, when products are defined.
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Composition of Maps and Matrix Multiplication

Associativity

Remark

Matrix multiplication of real matrices is associative. In particular,
if A, B and C are matrices for which the products A(BC) and
(AB)C are defined, then in fact these are the same and thus
without ambiguity we have

A(BC) = ABC = (AB)C .

This follows generally from the associativity of function
composition, but can also be proven in a “hands-on” (albeit,
tedious) way using the formula for the entries of a matrix product,
some indicial manipulations, and the associativity of real addition.
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Composition of Maps and Matrix Multiplication

Elementary Matrices and Row Operations

A useful fact for when we study inverses of square matrices is that
the elementary row operations performed during row reduction can
be represented by matrix products.

Can you find a matrix which swaps the ith and jth rows of an
m × n matrix A, and leaves all other rows unchanged? Should it
multiply A from the right, or from the left?

A hint is to consider elementary vectors, and how they can “pick
out” columns of a matrix. How can you pick out rows?

Can you find a matrix that scales the ith row of an m × n matrix
A by a scalar s, but leaves the remaining rows unchanged? Should
it multiply A from the right, or from the left?
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Composition of Maps and Matrix Multiplication

Elementary Matrices and Row Operations

Can you identify a matrix which acts on an m × n matrix A by
replacing the ith row with the sum of the ith row and s times the
jth row, for some scalar s ∈ R?

You can also manipulate columns by matrix products. How can
you accomplish the column operation analogs of the above
elementary row operations, using matrix multiplication?

Row and column manipulations by matrix multiplication aid in
many programming applications, and play a prominent role in
linear coding theory and digital signal processing.
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Matrices as Vectors: Scaling and Addition

Adding Matrices

Definition

Given two m × n matrices A and B, the sum A + B is defined to
be the matrix such that for any x ∈ Rn, (A + B)x = Ax + Bx.

Using the indicial notation for entries, we have then that the ith
entry of (A + B)x is

n∑
j=1

aijxj +
n∑

j=1

bijxj =
n∑

j=1

(aij + bij)xj ,

which implies that A + B is obtained by adding corresponding
entries of A and B.
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Matrices as Vectors: Scaling and Addition

Adding Matrices

Example

What is the sum of the matrices

A =

ñ
11 6 2
3 −7 9

ô
,B =

ñ
−4 2 3
7 8 −5

ô
?

By adding the components, we obtain

A + B =

ñ
11− 4 6 + 2 2 + 3
3 + 7 −7 + 8 9− 5

ô
=

ñ
7 8 5

10 1 4

ô
.
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Matrices as Vectors: Scaling and Addition

Scaling Matrices

Matrices can also be scaled, by simply scaling all the entries:
sA = (saij) for any s ∈ R.

In particular, we may also subtract matrices, and each matrix has
an additive inverse, equal to −1 times the original matrix.

There’s also a unique zero matrix of any given size, consisting of
all zero entries. We denote the m × n zero matrix by 0m×n. If
there’s no risk of confusion, we may omit the subscript indicating
the dimensions.
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Matrices as Vectors: Scaling and Addition

Spaces of Matrices

It is easy to check that since matrices can be scaled, added, and
have an identity, all in analogy to vectors, they satisfy the same
eight fundamental properties we described for real vectors.

In fact, we can consider the set of all m × n matrices as being
equivalent to the set of all mn-component vectors, as a real vector
space. There is of course not a unique way to identify these spaces.

One can write Rm×n to denote the space of all m × n matrices.

The vector arithmetic on the space of matrices Rm×n is in a sense
equivalent to that of the vector space Rmn.

We’ll clarify this later when we study vector spaces in chapter 4.
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Transposition

The Matrix Transposed

If A ∈ Rm×n, then we can define a new matrix called its transpose,
which lives in Rn×m:

Definition

The matrix A = (aij) has transpose At = (aji ), in other words, the
transpose matrix is the matrix obtained by exchanging the rows of
A for columns.

Example ñ
1 2 3
4 5 6

ôt
=

 1 4
2 5
3 6

 .
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Transposition

Observation

The dot product of two vectors is equivalent to a matrix vector
product where one of the vectors has been transposed:

u · v = utv = vtu .

For a given 3-vector n =

 a
b
c

, we describe a plane equation for

the plane ax + by + cz = 0 perpendicular to n through the origin
0 ∈ R3 as

n · x = 0 ⇐⇒ ntx = [0] ∈ R1×1 ' R.
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Transposition

Properties of Transposition

The transpose of a product is the product of the separate
transposition, taken in opposite order:

(AB)t = BtAt .

One can view transposition as a map from the space Rm×n to the
space Rn×m. It turns out this map is linear!

Indeed, you should verify that transposition commutes with
scaling, and distributes over sums:

(sA)t = s(At) , (A + B)t = At + Bt .
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Transposition

Homework

I recommend reading sections 1.7, and 1.8 for Monday 2/12,
1.9 by Wednesday 2/14 (if not by Monday), and 2.1 by Friday
2/16.

The MyMathLab assignment on 1.7 (linear independence) is
due 2/13, and 1.8 (linear transformations) is due 2/15.

The first exam is coming up! Our section, math 235-04,
meets in Hasbrouck Laboratory Addition (HASA) 124 on
Tuesday night, February 27th, 7 - 9 pm.

The first exam covers the material of sections 1.1, 1.2, 1.3,
1.4, 1.5, 1.7, 1.8, 1.9, and 2.1 in the text.
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