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The Language of Functions

The Map x — Ax

Let A be an m x n matrix. We can view the assignment, to any
x € R", of the matrix-vector product

x — Ax
as a function which takes vectors x € R" to vectors in R™.
Thus there is a transformation
T:R" =< R"™

such that any T(x) = Ax € R™ is the linear combination of the
columns of A using the entries of x as weights.
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The Language of Functions

Functions, Transformations, Maps

Our perspective in this section is that we can regard this
assignment x — T(x) = Ax as a function, sending R" to some
subset of R™.

We wish to study properties of such maps, their images, and
various geometric effects of such transformations.

The terms “transformation”, “map” and “function” are used
interchangeably. Let us give a precise statement of what is meant
by this language.

A. Havens Introduction to Linear Transformations



Introducing Linear Transformations
[oYe] Yo

The Language of Functions

What is Meant by “Transformation”?

Definition

A function, also called a map or transformation of a set X with
values in a set Y is an assignment of an element of Y to each
element x € X.

Often, one chooses a letter such as f or T to label the function.

The set containing the “inputs,” X, is called the domain of the
function, and the set Y containing possible outputs is called the
codomain.

To completely specify a function, one must give the domain,
codomain, and an assignment rule.
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The Language of Functions

Specifying a Transformation

This is often notated as

f:X—=Y
x+—y = f(x)

where f(x) would be an explicit rule giving an element of Y.

Note that for a given x € X, a function assigns only one element
yey.
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Framing the Matrix-Vector Product as a Map

Our Primary Example

Example

The primary example of our concern is the case where X = R" for
some n>1, Y =R™ for some m > 1, and the function is a
transformation defined by mapping a vector x to its matrix vector
product with some m x n matrix A.

In the notation of our definition, we specify this transformation of
R" by writing
T:R" > R™
X — y=Ax
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Framing the Matrix-Vector Product as a Map

Brief Anatomy of a Matrix Map

Example
Observe that the domain is R”, and the codomain is R™.

The assignment rule y = T(x) in this case is given by y = Ax.
Sometimes, one simply describes the rule by writing T(x) = Ax.

Given an explicit matrix, we obtain an explicit example of a
transformation. We will see a number of explicit examples shortly,
and we'll examine their effects geometrically in each case.
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Motivating the Terminology

Domains and Images

A useful perspective is that a transformation specifies how to
transform or map a set, the domain, to some subset of the
codomain.

One then studies transformations in part by understanding what
happens to a given point in the domain. For transformations of
spaces, this often entails studying geometry (and sometimes

topology).
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Motivating the Terminology

Geometry/Topology

When the domain and codomain are the same space (e.g. R"), the
geometry is sometimes captured by considering how points are
“pushed” or moved according to the map, and studying distances,
angles, coordinates, and other related measures of “where things
go” in relation to each other.

When the codomain is different from the domain, it can be helpful
to imagine that points are moved from the domain space to the
codomain space, with points possibly being collapsed or glued
together. For “discontinuous” maps, the domain may be cut or
pulled apart and then stitched or scattered onto some points or
regions of the codomain.
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Motivating the Terminology

Geometry/Topology

Topology concerns intrinsic properties of spaces and maps
necessary to discuss continuity. Geometry concerns the intrinsic
and extrinsic, metric properties used to study position, size, and
spatial relations.

The functions we study in this course (linear maps) have certain
rigidity properties forcing them to be continuous; they act on the
domains without breaking them apart or scattering relatively
nearby pieces to relatively faraway ends of the codomain.

For linear transformations any topological considerations, though
simple, will be largely ignored in our study. The geometry on the
other hand is illuminating, and so we will make use of geometric
notions as needed.
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Motivating the Terminology

A Mapmaker's Function

A useful visual, motivating the terminology “map”, is to think
about making a cartographical map of a piece of the earth.

The domain is the set of points Z on the earth (the “region”) that
are in the area over which the cartographer is constructing a map.

The codomain is the paper or vellum ¥ on which the cartographer
draws the map.
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Motivating the Terminology

A Mapmaker's Function

Let m be the rule specifying how a point of ¥ corresponds to a
point of Z. For a given point p € #Z on the globe, the
corresponding point m(p) € ¥ is called the image of p.

Thus, the cartographer is tasked with constructing a function

m: % — V that captures the curved region Z of earth as a flat
“image” on ¥. (A deep result, Gauss's Theorema Egregium, states
that the curvature of earth forces any such image to be distorted).
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Motivating the Terminology

It's Not Even a Metaphor

The set of all points of ¥ which correspond to points p € Z is
called variously the image of % under m, the image of the map
m: % — V, or the the range of the function m. This “total
image” or range is frequently denoted m(Z).
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Motivating the Terminology

A Remark on Notation and Terminology

The letters themselves in the above example are of course
irrelevant and may be swapped out for any other collection
denoting sets and a function rule.

| remark here that the textbook we are using reserves the term
“image” only for the image of a point, and uses “range” for the set
of all images. It is not uncommon to hear mathematicians use the
term image more broadly as | have in the previous slide.
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Motivating the Terminology

A Remark on Notation and Terminology

There is something evocative about considering “the image of a
map” or “the image of a transformation” while envisioning how a
transformation rule bends and stretches a piece of the globe onto a
flat page, or how a digital photo is rotated in image manipulation
software, or how a portion of space is molded and contorted into a
piece of another space.

For this reason, | prefer the term image to range (range suggests
one-dimensional images to me, as a collection of real numbers
arising from the functions studied in single variable calculus).

For a function f : X — Y, I'll write y = f(x) for the image of a
point x, and f(X) = Image(f) for the image of the whole domain
X by the function f. What is meant will always be clear from
context.
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Transformations of the Plane

Linear Endomorphisms of R?

The first examples we'll consider are maps of the plane constructed
via matrices. A fancy term for such maps is linear endomorphisms
of R?, but we can also just call them linear transformations of the
plane.

Since we want maps T : R> — R?, we need to send a 2-vector to a
2-vector. What size matrix should we use?

Since an m x n matrix A sends an n-vector to an m vector, we
need both m and n equal to two.
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Transformations of the Plane

Linear Endomorphisms of R?

A general linear endomorphism of R? can thus be described by a
map x — T (x) = Ax for some 2 x 2 matrix A.

We can write
a b X
T(x)—Ax—{C d}{y}

| ax+ by
cx+dy |
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Transformations of the Plane

2 Easy Examples

Consider the matrices
10 0 -1
=g 1] R=[1 7]

What are their respective actions on the plane?
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Transformations of the Plane

2 Easy Examples

Example
The map x — Iox is the “identity map” taking the vector x to

S HH MR

What of the other map, x — Rx?
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Transformations of the Plane

2 Easy Examples

Example
The map x — Rx rotates the vector x by an angle of 7/2 radians
counterclockwise:

We can easily confirm that x L Rx: x- Rx = x(—y) + (y)(x) = 0.
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Transformations of the Plane

Rotations of R?

Example
The latter matrix is a special case of general rotation matrices.

Fix an angle 6, measured counterclockwise from the x axis.

Then the matrix Ry given by

cosf —sinf
sinf cosd

|

acts on x € R? by rotating it through an angle of
counterclockwise.
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Transformations of the Plane

Projections in R?

Example
Another kind of map is a projection onto a line. For example, the

map
X 10 X X
— = ==
S lomelos][5]=15]
projects the vector x onto the x-axis, leaving only its x component.

What is the image of the projection? What subset of R? is sent to
07
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Transformations of the Plane

Projections in R?

Example

A useful exercise in vector geometry is to convince yourself of the
following general formula for projections. Fix a vector u. the
projection onto the line spanned by u is

X-u
X— —u.
u-u

Another good exercise: represent this map as a matrix, and show
that the result depends only on Span {u}, in the sense that
projecting onto any other nonzero collinear vector yields the same
map.

We will eventually encounter a theorem that lets us systematically
compute a matrix representing a linear map.
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Transformations of the Plane

Reflections in R?2

Try to describe a reflection through the x-axis. Can you write
down a matrix which accomplishes this?
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Transformations of the Plane

Reflections in R?2

Example
Try to describe a reflection through the x-axis. Can you write
down a matrix which accomplishes this?

welo S5 1=12)

is a reflection through the x-axis.

The map

A. Havens Introduction to Linear Transformations



Examples of Matrix Transformations
000000000e0000

Transformations of the Plane

Reflections in R?2

Example

Given a vector v € R?, can you describe a general reflection
through the line Span {v}?

Using projections onto a line, you can build reflections (perhaps
after drawing the right picture).

You should be able to write down a formula for the reflection of x
through Span {v} using projections and dot products in terms of v,
and also a matrix in terms of the components of v.
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Transformations of the Plane

Shear Transforms

Consider the matrix
Gy — 11
10 1"

What are the images of the vectors
1 01,
o) 3]

This matrix shears the plane along the x-axis.
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Transformations of the Plane

Dilations and Contractions

Example
Let s € R be a positive scalar. A transformation

x+—>sx—50x
T 10 s

is called a dilation if s > 1 and a contraction if 0 < s < 1.
Correspondingly, it either dilates (expands) or contracts (shrinks)
areas of the plane, respectively.
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Transformations of the Plane

Similarity transformations

Some linear maps of the plane are a mixture of the above examples.

Maps which decompose as a collection of reflections, rotations,
and dilations are a subset of the similarity transforms of the plane.
These preserve the Euclidean shapes and angles, but not sizes, of
shapes in the plane.

However, there are nonlinear similarity transforms: translations. A
translation shifts the zero vector's location, but a map x — Ax will
always send 0 to itself.

A transformation of the form x — Ax + b for a matrix A and a
constant vector b are called affine transformations, and are a
natural generalization of linear transformations.
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Transformations of the Plane

Similarity transformations

Example
Consider the map
X { v } .
X+y
What is the matrix of this map? What does this map do?

| claim that this is a similarity transformation which admits a
decomposition involving a rotation, a dilation, and a reflection!
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Transformations of the Plane

Similarity transformations

Example
Consider the map
X { v } .
X+y
What is the matrix of this map? What does this map do?

| claim that this is a similarity transformation which admits a
decomposition involving a rotation, a dilation, and a reflection!

You can check that it is the result of first rotating by 7/4
counterclockwise, then dilating by v/2, and then reflecting through
the y-axis. (Hint: consider the images of the corners of the unit
square with vertices (0,0), (1,0), (1,1), and (0,1).)
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Transformations of 3-Space

Endomorphisms of R3

Just as one can consider maps from R? to itself, one can consider
maps from R3 to itself.

We'll look at just a couple of linear endomorphisms of R3.
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Transformations of 3-Space

Projection to a plane in R3

The map

projects R3 onto the plane z = 0, commonly called the xy-plane.
Essentially the same information is contained in the map

T:R3 5 R?

X’_>100
Y 01 0
4

N < X
Il
< X

but the latter map has codomain R?.
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Transformations of 3-Space

Reflection Through a Line

Consider the map

X —x
y|= | ¥
z z

This is a 3-dimensional reflection through the line x =0=y, i.e.,
a reflection through the z axis.

Can you give a matrix description for this map? Can you describe
a general reflection through a line? What about a reflection
through a plane?
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Transformations of 3-Space

The Many Maps | Wish We Could Examine...

Here's a few challenge problems worth exploring:
@ What is the matrix of a projection onto the plane
ax+ by + cz =07
@ Can you give a general matrix describing reflection through a
plane ax + by + cz = 07
@ Find a matrix describing a spatial rotation by an angle
counterclockwise around a vector v.

@ Show that any rotation (of either R? or R®) can be written as
a composition of reflections.

o What is the general form of a similarity transformation of R?
that fixes the origin? Can you describe a general form of a
similarity transformation of R3?
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Defining Linear Transformations

x — Ax is Linear

What makes the above examples linear?

For one, we can check that they either send lines to lines or crush
lines to 0.

More generally, the maps we've called linear send linear
combinations of vectors to a linear combination of the images of
those vectors, with the same weights. In a sense, this is the
algebraic way to understand what it means to preserve a linear
structure.

This happens for our examples because of the general properties of
matrix-vector multiplication that we encountered before.
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Defining Linear Transformations

In particular, recall the proposition:

Proposition

Let u and v be arbitrary vectors in R", let s € R be any real scalar,
and let A be any m x n matrix. Then the matrix vector product
satisfies the following two properties:

(i.) A(lu+v) =Au+ Ay,

(ii.) A(su) =s(Au).

It follows from this that A(sx + ty) = s(Ax) + t(Ay) for any
m X n matrix A, vectors x,y € R" and scalars s, t € R. This
generalizes to the following fact:

The image of a span of vectors will be the span of the images.
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Defining Linear Transformations

Definitions of Linear Transformations T : R" — R™

Definition

A function T : R” — R™ is called a linear transformation, or a
linear map if and only if for any vectors u,v € R” and any scalar
s € R the following two properties hold:

(i.) T(u+v)=T(u)+ T(v),

(ii.) T(su) =sT(u).

Remark
It follows from this definition that for a linear map T : R” — R™,

T(C1V1 + ...+ ckvk) =C1 T(Vl) + ...+ ck T(Vk) ,

and T(0)=0.
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Testing Linearity

Showing a Map is Linear: an Example

Example
Fix two vectors u,v € R”, and consider the map

T(x)=(u-x)v—(u-v)x.

Use the definition of a linear transformation to show that T is
linear.

The key is that we can check both properties (i.) and (ii.) by
confirming that T(ax + by) = aT(x) + bT(y) for any vectors

x,y € R" and any scalars s,t € R. That is, we test that the image
of a linear combination is a linear combination of images.
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Testing Linearity

Testing Linearity

Let a, b € R be arbitrary scalars, and x,y € R" arbitrary vectors.
Then

T(ax + by)

(u (ax + by))v — (u-v)(ax + by)

(u- (ax) +u- (by))v — (u-v)(ax) — (u-v)(by)
v+ bl y)v — afuv)(x) — b(u-v)(y)
u-x)v—a(u-v)(x)+ b(u-y)v—blu-v)y
a((u x)v — (u- v)x) + b((u y)v —(u- v)y)
aT(x)+ bT(y).

= a(
= a(
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A Non-Linear Example

We can easily check that affine transformations x — Ax 4+ b from
R" to R™ are not linear.

For a fixed m x n matrix A and a nonzero vector b € R™, let
T(x) = Ax + b, and consider T(sx) for any scalar s € R.
T(sx) = A(sx) + b =sAx+ b # s(Ax + b).

This proves our claim.
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The Role of Matrices in Linear Maps

Representing Linear Maps

The reason we've focused so much on matrices in our examples is
that any linear map from R” to R™ can be realized by some
matrix-vector product formula!

We'll encounter a precise way to compute the matrix of a linear
map if we know its effect on certain special vectors, called the
standard basis vectors of R".

The standard basis vectors are just the n different n-vectors
corresponding to the points a unit distance from the origin along
right-angled coordinate axes. They're called a basis because they
are a linearly independent set that span the whole space (in this
case R".)

A. Havens Introduction to Linear Transformations



Linear Transformations
000

The Role of Matrices in Linear Maps

Why We Must Study Matrix Algebra

A matter remains: we've not discussed how to efficiently compose
linear maps.

We saw already that some maps can be constructed by applying
separate linear transformations in succession (e.g. similarity
transformations). We would like to know how to represent a map
that results from applying several matrices in succession.

This leads naturally to the notion of matrix products. We will also
be able to regard spaces of matrices as being analogous to spaces
of vectors, with rules for scaling and addition. This perspective will
enrich our study of linear transformations.
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The Role of Matrices in Linear Maps

Matrices Everywhere

More generally, when we study other vector spaces (like spaces of
polynomials), it will turn out that there are ways to choose linear
coordinates, after which we can still represent linear maps by
matrices (though the entries won't always be real numbers, if e.g.
we are studying complex vector spaces, or vector spaces over finite
fields).

Thus, while the definition of linear maps mirrors the properties of
matrix-vector products, we can imagine most linear maps as being
conveniently represented by matrices. The exceptions appear in the
study of infinite dimensional vector spaces, like spaces of functions,
where linear maps can be more complex, like derivative and
integral operators.
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The Role of Matrices in Linear Maps

Homework

@ | recommend reading sections 1.7, and 1.8 for Monday 2/12,
1.9 by Wednesday 2/14 (if not by Monday), and 2.1 by Friday
2/16.

@ The MyMathLab assignment on 1.7 (linear independence) is
due 2/13, and 1.8 (linear transformations) is due 2/15.

@ The first exam is coming up! Our section, math 235-04,
meets in Hasbrouck Laboratory Addition (HASA) 124 on
Tuesday night, February 27th, 7 - 9 pm.

@ The first exam covers the material of sections 1.1, 1.2, 1.3,
1.4,15,1.7,1.8, 1.9, and 2.1 in the text.
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