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Linear Combinations and Systems

A Recollection

Fix a collection a1, . . . , an of vectors in Rm.

1 We can connect the question of whether a vector b ∈ Rm is a
linear combination of the vectors a1, . . . , an to the question of
whether the system with augmented matrixî

a1 . . . an b
ó

has a solution.

2 Indeed, there exists some collection of n real numbers
x1, . . . xn such that

b = x1a1 + . . . xnan

if and only if there is a solution (x1, . . . xn) to the system with
the above augmented matrix.
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Linear Combinations and Systems

Translating from systems to vector equations

In particular, if b is a linear combination of the columns a1, . . . , an
then it must be the case that there is some matrix A′ that is
row-equivalent to the matrix A =

î
a1 . . . an

ó
such that

RREF
Ä î

a1 . . . an b
ó ä

=
î
A′ x

ó
where

x =

 x1
...
xn

 .

Conversely, if you can row reduce the augmented matrix of a
system to obtain a solution, then you’ve realized the column vector
of constants b as a linear combination of the columns of the
coefficient matrix A.
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Matrix-Vector Products

Defining Matrix-vector Multiplication

The perspective above suggests that given an m × n matrix and a
vector x ∈ Rn, there is a natural way to create a linear combination
x1a1 + . . .+ xnan ∈ Rm using the columns a1, . . . , an of A.
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Matrix-Vector Products

Defining Matrix-vector Multiplication

Thus, we make the following definition:

Definition

Given an m × n matrix A =
î
a1 . . . an

ó
and a vector x ∈ Rn

we define the matrix vector product Ax to be the vector giving the
linear combination

x1a1 + . . . xnan ∈ Rm

of the columns fo A, where

x =

 x1
...
xn
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Matrix-Vector Products

Observation

Matrix-vector products are only defined when the sizes of the
matrix and vector are compatible – the number of components of
the vector x must equal the number of columns of the matrix. The
result will be a vector with as many components as the number of
rows of the matrix.

Remark

Later, we will interpret matrix-vector products as describing a
special kind of transformation, called a linear transformation. In
particular, an m × n matrix acts on an n-vector x ∈ Rn to produce
an m-vector Ax ∈ Rm, so we can describe a certain kind of map of
vectors from Rn to Rm. If n = m, these linear transformations
allow us to describe geometric transformations of space, such as
rotations and reflections, as well as other more general maps of
n-vectors.
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Computing Matrix-Vector Products

An Example

Example

Consider the matrix

A =

 1 −4 7
−2 5 −8
3 −6 9


and the vector

x =

 2
1
−1

 .

Compute Ax.
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Computing Matrix-Vector Products

An Example

Example

The result of the matrix vector product Ax is the linear
combination

Ax = (2)

 1
−2
3

 + (1)

 −4
5
−6

 + (−1)

 7
−8
9
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Computing Matrix-Vector Products

An Example

Example

By properties of scaling and vector addition:

Ax =

 2
−4
6

 +

 −4
5
−6

 +

 −7
8
−9


=

 2− 4− 7
−4 + 5 + 8
6− 6− 9

 =

 −9
9
−9

 .
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Computing Matrix-Vector Products

An Example

Example

We can write the computation slightly differently, to see a pattern
that will make computation easier:

Ax =

 (1)(2) + (−4)(1) + (7)(−1)
(−2)(2) + (5)(1) + (−8)(−1)
(3)(2) + (−6)(1) + (9)(−1)

 .

Observe that each entry is the result of taking the row entries and
pairing them with the entries of x component-wise to make
products, and then summing these products.
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Computing Matrix-Vector Products

Dot Products

This construction will be familiar to anyone who has encountered
the dot product of vectors:

Definition

Given two vectors u, v ∈ Rn the dot prooduct u · v of u and v is
the scalar quantity defined by the formula

u · v =
n∑

i=1

uivi = u1v1 + u2v2 + . . .+ unvn .

We won’t study this product in depth at the moment, but we will
examine it in greater detail at the end of the course. It’s also
commonly encountered and studied in multivariable/vector calculus
courses, and in physics courses.
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Computing Matrix-Vector Products

Dot Product Properties

Let u, v,w be arbitrary vectors in Rn, and s ∈ R any real scalar.
Here’s just a few properties of dot products, which I will not prove
at this time:

u · v = v · u
(su) · v = s(u · v) = u · (sv)

u · (v + w) = u · v + u ·w
0 · u = 0

u · u = ‖u‖2, where ‖u‖ =
»
u21 + . . . u2n is the magnitude of

u.
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Computing Matrix-Vector Products

A Geometric Interpretation

Dot products are not just a neat algebraic trick for computing
matrix vector products; there’s a handy geometric meaning as well.

Proposition

Let u, v ∈ Rn be two vectors separated by an angle of θ ∈ [0, π].
Then the dot product u · v is the scalar quantity

u · v = ‖u‖ ‖v‖ cos θ .

We’ll come back to this interpretation eventually, as it allows us to
better understand the geometry of planes.
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Computing Matrix-Vector Products

The Matrix-Vector Product in terms of Dot Products

Let r1, . . . , rm be vectors whose entries correspond to the rows of
an m × n matrix A. Note that each ri ∈ Rn. Then for any x ∈ Rn

Ax =


r1 · x
r2 · x

...
rm · x

 ∈ Rm .
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Computing Matrix-Vector Products

Properties of the Matrix-Vector Product

Proposition

Let u and v be arbitrary vectors in Rn, let s ∈ R be any real scalar,
and let A be any m × n matrix. Then the matrix vector product
satisfies the following two properties:

(i.) A(u + v) = Au + Av,

(ii.) A(su) = s(Au).

Are these properties familiar?
These will be the two properties we demand of linear
transformations. That is, to be called linear, a function, map
transformation, or whatever from one vector space to another must
meet conditions like those above.
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Returning to Systems

One Linear Equation to Capture them All

We now return to thinking about systems. Our discussion of linear
combinations allowed us to conclude that numbers x1, . . . , xn solve
a system of m equations with coefficient matrix A and column
vector of constants b if and only if b was a linear combination of
the columns of A, with x1, . . . , xn as the weights.
We can now rephrase this as follows: the vector x whose
components are x1, . . . , xn solves the matrix-vector equation

Ax = b

if and only if x1, . . . , xn solve the system with augmented matrixî
A b

ó
.

In particular, any linear system is captured by an equation of the
form Ax = b.
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Returning to Systems

Solving Ax = b

Given a matrix A and a vector b, solving Ax = b amounts to
expressing b as a linear combination of the columns of A, which
one can do by solving the corresponding linear system.

Thus, to find a solution, one can row reduce the augmented matrixî
A b

ó
.
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Returning to Systems

A Proposition on Existence of Solutions

Proposition

Let A be an m × n matrix. Then the following statements are
equivalent:

For every b ∈ Rm, the system Ax = b has a solution,

Each b ∈ Rm is a linear combination of the columns of A,

The span of the columns of A is all of Rm,

There is a pivot position in each row of A.
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Some Examples in three dimensions

Example: Is b in Span {a1, a2}?

Consider the vectors

a1 =

 2
1
−1

 , a2 =

 −1
0
1

 , b =

 8
3
−5

 .

Is b ∈ Span {a1, a2}, i.e., does the vector b lie in the plane
spanned by a1 and a2?

Let’s reframe this as a matrix-vector equation.
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Some Examples in three dimensions

Example: Is b in Span {a1, a2}?

Thus, we want to know, is there a vector x ∈ R2 such that

b = x1a1 + x2a2 =

 2 −1
1 0
−1 1

 ñ x1
x2

ô
.

The last expression comes from the definition of the matrix vector
product. If we compute the product, we recover a system in a
vector form: 2 −1

1 0
−1 1

 ñ x1
x2

ô
=

 2x1 − x2
x1

−x1 + x2

 =

 8
3
−5

 .
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Some Examples in three dimensions

Example: Is b in Span {a1, a2}?

We can thus row reduce the corresponding augmented matrix 2 −1 8
1 0 3
−1 1 −5

 .

Row reducing, we have 2 −1 8
1 0 3
−1 1 −5

 ∼
1 0 3

0 1 −2
0 0 0

 .

Thus b = 3a1 − 2a2 ∈ Span {a1, a2}.
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Some Examples in three dimensions

Existence Problems for Plane Intersections

Here I pose two questions that we are now better equipped to
answer and understand:

Given two plane equations, when do they intersect in a single
line? How can we describe this solution using vectors?

Given three plane equations, what geometric conditions
correspond to the non-existence of a solution?

Perhaps the nicest, and most geometric answers to these questions
involve us thinking a bit about the dot product introduced above.

As far as describing solution sets, the idea is to use linear
combinations to express the solutions in terms of some parameters.
This will be the topic of discussion for the next lecture.
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Vector description of a line

From Spans to Affine Lines

Recall, we saw that for any nonzero vector v ∈ Rn,
Span {v} ⊂ Rn describes a line through the origin 0.

If we want an affine line, i.e., one not necessarily through the
origin, we can displace the set of points of some Span v by a
constant vector, b.

Thus, the set of vectors r(t) = b + tv describes a line through
the point with position vector b and parallel to the line
Span {v} = {tv | t ∈ R}.
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Vector description of a line

Three planes meeting in a line

Recall the system 
x + 2y + 3z = −1

4x + 5y + 6z = 0

7x + 8y + 9z = 1

which we had solved in the lecture on Gauss-Jordan elimination.

We found that the solution was of the form
(5/3 + z ,−4/3− 2z , z) for a free variable z . To emphasize that
this is just a scalar parameter, I will re-label it t = z .
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Vector description of a line

Three planes meeting in a line

We can rephrase this as seeking a vector r ∈ R3 with components
x , y , and z solving the matrix-vector equation 1 2 3

4 5 6
7 8 9


 x

y
z

 =

 −1
0
1

 .

Then observe that we can view the solution as the vector

r(t) =

 5/3
−4/3

0

 + t

 1
−2
1

 ,

for any real scalar t. This is thus a line through (5/3,−4/3, 0).
What’s its direction?
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Vector description of a line

In the preceding example, one of the plane equations was
redundant, in the sense that the solution set would still be the
aforementioned line if we just took two of the planes.

Can you express the last plane’s equation as a linear combination
of the other two equations?

What happens if we change the constant vector b so that its
z-component is 2 instead of 1?
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Planes, Displacement Vectors, and Normals

The Plane Equation as a Vector Equation

Recall, a plane in R3 has a description as the set of points (x , y , z)
satisfying an equation of the form ax + by + cz = d , for some
constants a, b, c, d ∈ R.

We can rephrase this as a matrix-vector equationî
a b c

ó x
y
z

 = [d ] ,

where the 1× 1 matrix [d ] can be thought of as a 1-vector, i.e., a
real number or simple scalar, but we included the brackets to
emphasize that it is the vector result of a matrix-vector product of
a 1× 3 matrix with a 3-vector x ∈ R3.
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Planes, Displacement Vectors, and Normals

The Plane Equation via the Dot Product

An alternate description is via the dot product. Let

n =

 a
b
c

 .

Then we can think of the above matrix-vector equation of a plane
as

ntx = [n · x] = [d ]

which, removing the brackets, is just n · x = d . Here, nt is the
1× 3 matrix whose entries are those of the column vector n (this is
an example of a construction called transposing a matrix, which
turns an m × n matrix into an n ×m matrix by reversing the roles
of rows and columns).
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Planes, Displacement Vectors, and Normals

Displacement Vectors

The conclusion is that the position vectors for points in the plane
have constant dot product with n!

We can take this conclusion further. Pick some initial position x0
known to satisfy the plane equation. Thus, n · x0 = d . Let x be
another point on the plane.

Consider a displacement vector from x0 to x. Such a vector is one
that, if drawn originating at the position x0 points to the position
x.

Convince yourself via the rules for vector addition/subtraction that
the components of this displacement vector are precisely the
components of x− x0.
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Planes, Displacement Vectors, and Normals

Normal Vectors

What can we say about n · (x− x0)?

Computing n · (x− x0), we have n · x− n · x0 = n · x− d . But since
x is a position on the plane, n · x = d , and so n · (x− x0) = 0!

The geometric interpretation of the dot product then tells us that
the cosine of the angle between n and the displacement vector
x− x0 must be 0. This implies that n and x− x0 are perpendicular
to each other!

The vector n is called a normal vector for the plane. A normal
vector n to a plane is any vector perpendicular to the plane.

A. Havens Matrix-Vector Products and the Matrix Equation Ax = b



Matrices Acting on Vectors The equation Ax = b Geometry of Lines and Planes in R3

Planes, Displacement Vectors, and Normals

Vectors Equation of a Plane

Thus, we have established the following vector formula for the
equation of a plane: given a point x0 on a plane, and any normal
vector n to the plane, the plane can be described as the set of
points (x , y , z) whose position vectors x satisfy

n · (x− x0) = 0 .

The quantity n · x0 will be some constant, d , and writing out the
dot product, one recovers the scalar formula:

0 = n · (x− x0) = n · x− d =

 a
b
c

 ·
 x

y
z

− d

=⇒ 0 = ax + by + cz − d ⇐⇒ ax + by + cz = d .
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Planes, Displacement Vectors, and Normals

Here are some key observations about this result:

The normal vector associated to a plane is not unique, since
we could multiply both sides of ax + by + cz = d by any
nonzero scalar to get a new, equivalent equation with a scaled
normal vector.

There is however a unique span associated to a given plane.
Given a line through the origin, and a point x0, we can
construct a unique plane normal to that line, and containing
the point x0.

Existence and uniqueness questions can be rephrased using
normal vectors!
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Planes, Displacement Vectors, and Normals

Normal Vectors and two planes

Given two planes, if they possess normal vectors which are not
parallel, they will meet in a line!

Indeed, if the normals aren’t parallel, they are not multiples of each
other.

The associated system of equations then has an augmented matrix
with two rows and four columns, and the rows are not multiples of
each other.

Thus there are precisely two pivot positions, and there is one free
variable.

On the other hand, if two planes have parallel normals, then they
are either the same plane, or disjoint parallel planes. The row
operations on the augmented matrix will give you a row with zeros,
except possibly the last entry. Consistency would demand that this
be a zero as well!
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Planes, Displacement Vectors, and Normals

A Challenge Problem

We know that two non-parallel vectors u and v in R3 span a plane
in R3 through the origin. Can you use linear algebra to find the
equation of this plane from components of u and v? Do this using
linear systems, rather than using techniques you may have learned
in other classes, such as computing cross products.

Note that this exercise is equivalent to computing some normal to
the plane, using row reduction! By choosing an appropriate
normal, you can actually recover the formula for the cross product
of two vectors in R3.
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Planes, Displacement Vectors, and Normals

Three Planes in R3

Here’s a deeper challenge, which connects to what we’ll be
learning when we study matrix algebra, and linear independence:

Try to convince yourself that three planes in R3 have a unique
intersection point precisely when their normals span R3.

Think about the inconsistent cases and the cases where the
solution is a line, and try to see that one of the normals is a linear
combination of the other two. The key is to connect the geometry
of these normals to the number of pivot positions in the coefficient
matrix.
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Planes, Displacement Vectors, and Normals

Homework for Week 2

MyMathLab for section 1.1 was due on Tuesday (last night).
You can submit late for a penalty if you didn’t get around to
it last night.

Section 1.2 in MyMathLab is due Thursday night.

There will be a quiz Friday. Expect something which requires
you to set up and solve a system, perhaps writing it initially in
the for Ax = b for some matrix A and a given vector b.

Solutions to the two challenge problems regarding planes
posed above can be submitted anytime before Friday, 2/9, for
extra credit. The first problem is expanded upon in the next
set of lecture slides.
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