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Echelon Forms

Row Echelon Form

Definition

A matrix A is said to be in row echelon form if the following
conditions hold

1 all of the rows containing nonzero entries sit above any rows
whose entries are all zero,

2 the first nonzero entry of any row, called the leading entry of
that row, is positioned to the right of the leading entry of the
row above it,

Observe: the above properties imply also that all entries of a
column lying below the leading entry of some row are zero.
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Echelon Forms

Row Echelon Form

Such a matrix might look like this:
a ∗ ∗ ∗ ∗ ∗
0 b ∗ ∗ ∗ ∗
0 0 0 c ∗ ∗
0 0 0 0 0 d

 ,

where a, b, c , d ∈ R× are nonzero reals giving the leading
entries, and ‘∗’ means an entry can be an arbitrary real
number.

Note the staircase-like appearance hence the word echelon
(from french, for ladder/grade/tier).

Also note that not every column has a leading entry in this
example.
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Echelon Forms

Row Echelon Form

A square matrix in row echelon form is called an upper triangular
matrix.
E.g. 

1 2 3 4
0 5 6 7
0 0 8 9
0 0 0 10


is a 4× 4 upper triangular matrix.
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Echelon Forms

Reduced Row Echelon Form

Definition

A matrix A is said to be in reduced row echelon form if it is in row
echelon form, and additionally it satisfies the following two
properties:

1 In any given nonzero row, the leading entry is equal to 1,

2 The leading entries are the only nonzero entries in their
columns.

We will often abbreviate row echelon form to REF and reduced row
echelon form to RREF.
Recall, we encountered the idea of reduced row echelon form of a
matrix when we considered solving a linear system of equations
using an augmented matrix.

A. Havens The Gauss-Jordan Elimination Algorithm



Definitions The Algorithm Solutions of Linear Systems Answering Existence and Uniqueness questions

Row Operations

Connection to Systems and Row Operations

An augmented matrix in reduced row echelon form
corresponds to a solution to the corresponding linear system.

Thus, we seek an algorithm to manipulate matrices to
produce RREF matrices, in a manner that corresponds to the
legal operations that solve a linear system.

We already encountered row operations, and these will be the
desired manipulations in building such an algorithm.

Though our initial goal is to reduce augmented matrices of
the form

î
A b

ó
arising from a general real linear system, the

algorithms we describe work for any matrix A with a nonzero
entry.
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Row Operations

Three Elementary Row Operations

Definition

Given any matrix A let Ri and Rj denote rows of A, and let s ∈ R
be a nonzero real number. Then the elementary row operations are

1 We may swap two rows, just as we may write the equations in
any order we please. We notate a swap of the ith and jth
rows of an augmented matrix by Ri ↔ Rj .

2 We may replace a row Ri with the row obtained by scaling the
original row by a nonzero real number. We notate this by
sRi 7→ Ri .

3 We may replace a row Ri by the difference of that row and a
multiple of another row. We notate this by Ri − sRj 7→ Ri .
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Row Operations

Row Equivalence

Definition

Two matrices A and B are said to be row equivalent if and only if
there is a sequence of row operations transforming A into B.

Observation

This notion is well defined and an equivalence relation. In
particular, if A is row equivalent to B then B is row equivalent to
A, since row operations are invertible. And if A is row equivalent
to B, and B is row equivalent to C, then A is row equivalent to C,
since we can concatenate sequences of row operations. (And of
course, trivially, every matrix is row equivalent to itself.)
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Row Operations

A Proposition

Proposition

For a given matrix A, there is a unique row equivalent matrix in
reduced row echelon form.

For any matrix A, let’s denote the associated reduced row echelon
form by RREF(A).

Proof.

The Gauss-Jordan Elimination Algorithm!

Wait, what’s that‽
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Pivots

Leading Entries and Pivot Positions

Definition

A pivot position of a matrix A is a location that corresponds
to a leading entry of the reduced row echelon form of A, i.e.,
aij is in a pivot position if an only if RREF(A)ij = 1.

A column of a matrix A containing a pivot position is called a
pivot column.

A pivot entry, or simply, a pivot is a nonzero number in a
pivot position, which may be used to eliminate entries in its
pivot column during reduction.

The number of pivot positions in a matrix is a kind of invariant of
the matrix, called rank (we’ll define rank differently later in the
course, and see that it equals the number of pivot positions)
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Pivots

Pivoting Down

We are ready to describe the procedure for pivoting downward:

Definition

Let aij denote the entry in the ith row and jth column of an m× n
matrix A. Suppose aij 6= 0. To pivot downward on the (i , j)th
entry aij of A is to perform the following operations:

(i.)
1

aij
Ri 7→ Ri ,

(ii.) For each integer k > i , Ri+k − ai+k,jRi 7→ Ri+k .

Said more simply, make the nonzero entry aij into a 1, and use this
1 to eliminate (make 0) all other entries directly below the (i , j)th
entry.
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Pivots

Pivoting Up

In the algorithm, we’ll first pivot down, working from the
leftmost pivot column towards the right, until we can no
longer pivot down.

Once we’ve finished pivoting down, we’ll need to pivot up.

The procedure is analogous to pivoting down, and works from
the rightmost pivot column towards the left. Simply apply row
operations to use the pivot entries to eliminate entries in each
pivot column above the pivots. This is an algorithmic way to
accomplish back-substitution while working with matrices.
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Description

Overview of the algorithm - Initialization and Set-Up

We present an overview of the Gauss-Jordan elimination algorithm
for a matrix A with at least one nonzero entry.

Initialize: Set B0 and S0 equal to A, and set k = 0. Input the pair
(B0, S0) to the forward phase, step (1).

Important: we will always regard Sk as a sub-matrix of Bk , and
row manipulations are performed simultaneously on the sub-matrix
Sk and on its parent matrix Bk .
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Description

Overview of the steps - Forward Phase

1 Given an input (Bk , Sk), search for the leftmost nonzero
column of Sk . If there is none or Sk is empty, proceed to the
backwards phase, step (5), with input Bk .

2 After finding a nonzero column, exchange rows of Bk as
necessary to bring the first nonzero entry up to the top row of
Sk (Any exchanges in this step alter both Bk and Sk). Label
the corresponding nonzero entry in Bk by pk (for pivot).

3 Pivot downwards on pk in Bk to form matrix Bk+1.

4 Narrow scope to the sub-matrix Sk+1 of Bk+1 consisting of
entries strictly to the right and strictly below pk . Repeat the
procedures in steps (1)-(3) with input (Bk+1,Sk+1).
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Description

Completing the Forward Phase

So, one loops over the first four steps until all pivot columns have
been located and pivoting down has occurred in each pivot column.

The matrix Bk is in row echelon form, with leading 1s in each
pivot position.

This completes the forward phase. and so the backwards phase
commences with, step (5).
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Description

Overview of the steps - Backwards Phase

5 Start at the rightmost pivot of Bk and pivot up. Call the
result Bk+1.

6 Move left to the next pivot column of Bk+1 and pivot up.
Increment k , and repeat this step until there are no remaining
pivots.

7 The matrix Bk returned by the previous step upon termination
is the output RREF(A).
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The algorithm in practice

A familiar 3× 4 Example

We’ll work with the augmented matrix

A =

1 1 1 6
1 −2 3 6
4 −5 6 12


from last time.

1 The entry a11 = 1, so we can pivot down, using the row
operations R2 − R1 7→ R2 and R3 − 4R1 7→ R3. This
transforms the matrix into the row equivalent matrix

B1 =

1 1 1 6
0 −3 2 0
0 −9 2 −12

 .
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The algorithm in practice

A familiar 3× 4 Example

2 Ignoring the first row and column, we look to the 2× 3
sub-matrix

S1 =

ñ
−3 2 0
−9 2 −12

ô
.

The top entry is nonzero, and so we may pivot downwards.
We first have to scale this entry to make it 1. In the matrix
B1 we would apply the row operation −1

3R2 7→ R2. Then we
eliminate the −9 below our pivot using R3 + 9R2 7→ R3. The
result is the matrix

B2 =

1 1 1 6
0 1 −2/3 0
0 0 −4 −12

 ,

which is row equivalent to A.
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The algorithm in practice

A familiar 3× 4 Example

3 We now consider the sub-matrix

S2 =
î
−4 −12

ó
.

the only thing to do in the pivoting down algorithm is to make
the first entry into a leading 1 by scaling, so we apply
−1

4R3 7→ R3 to B2. We now have an REF matrix row
equivalent to A, with leading 1s in each pivot position:

B3 =

1 1 1 6
0 1 −2/3 0
0 0 1 3

 .
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The algorithm in practice

A familiar 3× 4 Example

4 We’ve completed the forward phase, so we now we begin the
backwards phase, searching from the right for a pivot column
to begin pivoting up.
The right-most column is not a pivot column, since 3 is not
the leading entry in the bottom row. Thus, the column to its
immediate left is where we begin pivoting up, applying the
row operations R2 + 2

3R3 7→ R2 and R1 − R3 7→ R1 to B3 get

B4 =

1 1 0 3
0 1 0 2
0 0 1 3

 .
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The algorithm in practice

A familiar 3× 4 Example

5 Moving left once more, we use the pivot in the (2, 2) position
to pivot up in the second column from the left. The only row
operation we need is R1 − R2 7→ R1, yielding

B5 =

1 0 0 1
0 1 0 2
0 0 1 3

 .

By construction, this is row equivalent to A.

6 There are no more pivots, and the matrix is clearly in reduced
row echelon form. Thus RREF(A) = B5.
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The algorithm in practice

An Exercise

Consider the matrix

A =

 1 2 3
4 5 6
7 8 9

 .

Show that

RREF(A) =

 1 0 −1
0 1 2
0 0 0
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Interpreting RREF of an Augmented Matrix

Solved Systems with a Unique Solution

Proposition (Unique solutions for n linear equations in n variables)

Suppose A is an n × n matrix, and b is a column vector with n
entries. If every column of A is a pivot column, then the reduced
row echelon form of A is

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 . . . 0 1

 ,

the matrix with entries aij =

{
1 if i = j

0 if i 6= j
.
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Interpreting RREF of an Augmented Matrix

Solved Systems with a Unique Solution

Proposition (Unique solutions for n linear equations in n variables)

In this case, the corresponding linear system of equations

a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2
...

an1x1 + an2x2 + . . . + annxn = bn

has a unique solution.
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Interpreting RREF of an Augmented Matrix

Solved Systems with a Unique Solution

Proposition (Unique solutions for n linear equations in n variables)

In particular, if

RREF
Ä î

A b
ó ä

=


1 0 . . . 0 v1
0 1 . . . 0 v2
... . . .

. . .
...

...
0 . . . 0 1 vn

 ,

then the corresponding system of linear equations has solution
x1 = v1 , . . . , xn = vn.
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Interpreting RREF of an Augmented Matrix

An Example with a Free Variable

Consider the system 
x + 2y + 3z = −1

4x + 5y + 6z = 0

7x + 8y + 9z = 1 .

The corresponding augmented matrix is

M =

1 2 3 −1
4 5 6 0
7 8 9 1

 .
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Interpreting RREF of an Augmented Matrix

An Example with a Free Variable

Using row operations from the exercise above, one easily obtains

RREF(M) =

1 0 −1 5/3
0 1 2 −4/3
0 0 0 0


This tells us that the variable z is free, as any real value of z
satisfies the equation 0x + 0y + 0z = 0.
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Interpreting RREF of an Augmented Matrix

An Example with a Free Variable

The remaining equations are{
x − z = 5/3 ,

y + 2z = −4/3 .

Thus, solving for x and y in terms of the free variable z , we can
express the solution as (5/3 + z ,−4/3− 2z , z), for any real
number z . This system therefore has infinitely many solutions.

A. Havens The Gauss-Jordan Elimination Algorithm



Definitions The Algorithm Solutions of Linear Systems Answering Existence and Uniqueness questions

Interpreting RREF of an Augmented Matrix

Consistency

If no solution exists, the system is said to be inconsistent.
Otherwise, it is said to be a consistent system.

For an augmented matrix
î
A b

ó
, consistency requires that

the pivots all occur in positions within the coefficient matrix
A. Why?

If there is a pivot in the column b, then the corresponding row
of RREF(A) is a row of zeros. This corresponds to an
equation of the form 0 = a for nonzero a, which is
inconsistent.

An important fact we’ll use later is that such an inconsistency
arises when there is a way to some combine rows (and
columns) of A nontrivially to obtain a zero row (or zero
column). To understand the significance of this, we must
study the geometry of vectors.
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Interpreting RREF of an Augmented Matrix

An Inconsistent System

Consider the system 
x + 2y + 3z = 12

4x + 5y + 6z = 11

7x + 8y + 9z = −10 .

The corresponding augmented matrix is

A =

1 2 3 12
4 5 6 11
7 8 9 −10

 .
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Interpreting RREF of an Augmented Matrix

An Inconsistent System

After applying the appropriate row operations, one will find that

RREF(A) =

1 0 −1 0
0 1 2 0
0 0 0 1


Since 0 6= 1, this system is not consistent.

There is no set of values for x , y , and z that can satisfy all three
equations at once.

Any pair of planes from the above system intersect in a set of lines,
and one can show that the three lines of intersection never meet.
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The 2-variable case: complete solution

Any Two Lines. . .

We’ll apply the Gauss-Jordan elimination algorithm to
abstractly give a complete general solution to systems of two
equations in two variables:{

ax + by = e

cx + dy = f
←→

ñ
a b e
c d f

ô
.

We assume temporarily that a 6= 0. We will discuss this
assumption in more depth later.

With this assumption, we may pivot down from the top-left
entry.

Thus we apply the row operation aR2 − cR1 7→ R2.
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The 2-variable case: complete solution

Any Two Lines. . .

Applying aR2 − cR1 7→ R2 yields:ñ
a b e
c d f

ô
7−→

ñ
a b e
0 ad − bc af − ce

ô
.

We see that if ad − bc = 0, then either there is no solution,
or we must have af − ce = 0.

Let’s plug on assuming that ad − bc 6= 0. We may eliminate
the upper right position held by b in the coefficient matrix by
(ad − bc)R1 − bR2 7→ R1.
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The 2-variable case: complete solution

Any Two Lines. . .

Applying (ad − bc)R1 − bR2 7→ R1, yieldsñ
a(ad − bc) 0 (ad − bc)e − b(af − ce)

0 ad − bc af − ce

ô
=

ñ
a(ad − bc) 0 ade − abf

0 ad − bc af − ce

ô
.
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The 2-variable case: complete solution

Any Two Lines. . .

Since we assumed a and ad − bc nonzero, we may apply the
final row operations 1

a(ad−bc)R1 7→ R1 and 1
ad−bcR2 7→ R2 to

obtain ñ
1 0 (de − bf )/(ad − bc)
0 1 (af − ce)/(ad − bc)

ô
,

so we obtain the solution as

x =
de − bf

ad − bc
, y =

af − ce

ad − bc
.

About that assumption, a 6= 0 . . .
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The 2-variable case: complete solution

Any Two Lines. . .

Note that if a = 0 but bc 6= 0, the solutions are still well
defined.

One can obtain the corresponding expressions with a = 0
substituted in by instead performing elimination onñ

0 b e
c d f

ô
,

where the first step would be a simple row swap.
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The 2-variable case: complete solution

Any Two Lines. . .

However, if ad − bc = 0, there is no hope for the unique
solution expressions we obtained, though there may still be
solutions, or there may be none at all.

How do we characterize this failure geometrically?

A solution is unique precisely when the two lines ax + by = e
and cx + dy = f have distinct slopes, and thus intersect in a
unique point. One can show that ad − bc measures whether
the slopes are distinct!

If ad − bc = 0, there could be no solutions at all (two distinct
parallel lines) or infinitely many solutions!
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The 2-variable case: complete solution

Existence and Uniqueness of Solutions for
Two-Dimensional Systems

Proposition

For a given two variable linear system described by the equations{
ax + by = e

cx + dy = f

the quantity ad − bc = 0 if and only if the lines described by the
equations have the same slope.

Corollary

There exists a unique solution to the system above if and only if
ad − bc is nonzero.
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The 2-variable case: complete solution

Proofs?

Proof.

The proof of this corollary follows immediately from our application
and discussion of Gauss-Jordan applied to the system.

In the past, I’ve assigned the proof of the above proposition as an
exercise, as all it involves is a little algebra and an attention to the
different cases.
This time, I’ll leave the proof here in the slides, for your perusal.
Another way it can be proven will be uncovered later in the course,
when we discuss determinants. This gives an alternate (and in
some sense, dual) geometric interpretation, which involves vectors
and areas.
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The 2-variable case: complete solution

Proof of the Proposition?

Proof.

We must show two directions, since this is an if and only if
statement.

Namely, we must show that if the lines have the same slopes, then
ad − bc = 0, and conversely, if we know only that ad − bc = 0, we
must deduce the corresponding lines possess the same slopes.

Let’s prove the former. We have several cases we need to consider.
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The 2-variable case: complete solution

Proof of the Proposition?

Proof.

First, let’s suppose that none of the coefficients are zero, in which
case we can write each equation in slope-intercept form:

ax + by = e ←→ y = −a

b
x +

e

b
,

cx + dy = f ←→ y = − c

d
x +

f

d
,

Applying the assumption that the lines have identical slopes, we
obtain

− a

b
= − c

d
=⇒ ad = bc =⇒ ad − bd = 0 . (?)
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The 2-variable case: complete solution

Proof of the Proposition?

Proof.

On the other hand, if for example, a = 0, then the first equation is
by = e, which describes a horizontal line (we must have b 6= 0 if
this equation is meaningful).

This tells us that the other equation is also for a horizontal line, so
c = 0 and consequently ad − bc = 0 · d − b · 0 = 0.

A nearly identical argument works when the lines are vertical,
which happens if and only if b = 0 = d .
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The 2-variable case: complete solution

Proof of the Proposition?

Proof.

It now remains to show the converse, that if ad − bc = 0, we can
deduce the equality of the lines’ slopes.
Provided neither a nor d are zero, we can work backwards in the
equation (?):

ad − bc = 0 =⇒ −a

b
= − c

d
.

Else, if a = 0 or d = 0 and ad − bc = 0, then since 0 = ad = bc,
either b = 0 or c = 0.

But a and b cannot both be zero if we have a meaningful system
(or indeed, the equations of two lines).
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The 2-variable case: complete solution

Proof of the Proposition?

Proof.

Thus if a = 0 and ad − bc = 0, then c = 0 and the lines are both
horizontal.

Similarly, if d = 0 and ad − bc = 0, then b = 0 the system
consists of two vertical lines.
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The Big Questions

Recall the general questions we want to ask about solutions to a
linear system:

Existence: does some solution exist, i.e. is there some point
satisfying all the equations? Equivalently, is the system
consistent?

Uniqueness: If a solution exists is it the only one?

Our preceding discussion leaves us with a few valuable results
answering these questions.
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The Big Questions

A General Existence and Uniqueness Proposition

Proposition

A system with augmented matrix
î
A b

ó
is consistent if and only

if there is no row of the formî
0 0 . . . 0 b

ó
in RREF(A), or equivalently, if all pivot positions of

î
A b

ó
occur

within the coefficient matrix A (and thus correspond to pivot
positions of A).
If the system is consistent, then either there is a unique solution
and no free variables, or there are infinitely any solutions, which
can be expressed in terms of free variables. The number of free
variables is the number of non-pivot columns of the coefficient
matrix.
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The Big Questions

Geometric Existence and Uniqueness for 2 Lines

For 2 linear equations in 2 variables, we have a nice geometric
answer to the existence and uniqueness questions.

Proposition

For a system of 2 equations in 2 variables, there is a unique
solution precisely when the lines have distinct slopes, in which case
there are two pivot positions and the quantity ad − bc is nonzero.

If ad − bc = 0, the lines have identical slopes, and the system is
consistent if and only if af − ce = 0 = de − bf , in which case the
equations describe the same line. The system is inconsistent
precisely when the lines are parallel and distinct.

We’d like a geometric interpretation of the general existence and
uniqueness theorem. At least, it would be nice to understand its
implications for planes in three dimensions.
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Three dimensional systems

What About Planes?

Will three nonparallel planes always intersect in a unique
point? We saw above that the answer is no.

For two nonparallel planes, the geometric intersection is a line.
We don’t get unique solutions in this case, but we can still use
row reduction to describe the line. Our free variable example
above shows algebraically how to describe such a line in terms
of a parameter (in this case, arising from one of the variables).

Try to picture an inconsistent system of planes.
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Three dimensional systems

Towards Geometry in R3 and Rn

We’re missing an important tool for understanding how these
things fit together.

That tool is vectors. They will play a role for lines in R3 analogous
to slopes (we need more information than a single real number to
define direction of a line in three dimensions.)

With vectors we will be able to better visualize lines in space, and
understand matrices more deeply.

In fact, we can rephrase linear systems as problems involving vector
arithmetic. We can even use vectors to understand where the
equation of a plane comes from.

A deep understanding requires that we discuss the geometry and
algebra of vectors.
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Homework for Week 1

Go to
http:

//people.math.umass.edu/~havens/math235-4.html,
review the policy and expectations for this section and the
overall course.

Read the course overview on the section website.

Use the course ID to log into MyMathLab.

Please read sections 1.1-1.3 of the textbook for Friday.

A. Havens The Gauss-Jordan Elimination Algorithm

http://people.math.umass.edu/~havens/math235-4.html
http://people.math.umass.edu/~havens/math235-4.html

	Definitions
	Echelon Forms
	Row Operations
	Pivots

	The Algorithm
	Description
	The algorithm in practice

	Solutions of Linear Systems
	Interpreting RREF of an Augmented Matrix
	The 2-variable case: complete solution

	Answering Existence and Uniqueness questions
	The Big Questions
	Three dimensional systems


