
CHALLENGE PROBLEMS

A. HAVENS

This is a list of challenge and extra credit problems, which may count towards quiz or

homework deficits. You may try any problems of your choosing, and you need not do all parts

of a problem to receive some credit (though you should still try all parts of any problem you

select).

1. Early Material

The problems in this section were proposed early in the course, and thus I require that

you solve them (first, at least) with only the tools available at the time, namely, linear

systems, the Gauss-Jordan row reduction algorithm, and any relevant theorems from before

the introduction of cross products, determinants, and general vector space theory. Note that

you may assume elementary results about orthogonality and the dot product.

(1) For the following problem, you must not use cross products; you should however

check that the expression you obtain for the resulting normal is equivalent to the

cross product up to scaling.

(a) Given arbitrary 3-vectors u and v spanning a plane through a point x0 ∈ R3,

find the equation of the plane, and express a line through 0 normal to the plane

as the solution of some homogeneous system, in terms of the components of u

and v.

(b) Describe the normal line to this plane through a given point y ∈ R3 parametri-

cally.

(2) Without using determinants, show that three planes in R3 intersect in a unique point

if and only if their normals span R3.

(3) Rigorously prove the following statements:

(a) For any finite set S of vectors in Rn, if v ∈ S is a vector such that

spanS = span (S − {v}) ,

then S is a linearly dependent set.

(b) If a finite set S ′ also containing v is linearly independent, then

span (S ′ − {v}) ( spanS ′ .
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(4) For the following, you should attempt to work solely with the definitions and results

introduced in lecture 8 on linear independence and dependence.

(a) Describe an algorithm to reduce a linearly dependent set S ⊂ Rn of finitely

many vectors to a linearly independent set S ′ ⊂ Rn such that spanS = spanS ′.

Show that regardless of any choices made in the algorithm, the final number of

vectors in S ′ will be the same, and depends only on spanS itself (and not on S

or choices you made).

(b) Explain why the number |S ′| of vectors in the linearly independent set S ′ must

be less than or equal to n.

(5) Show that the map Rθ(x) =

 cos θ − sin θ

sin θ cos θ

x is a counter-clockwise rotation of

R2 about 0 by an angle of θ ∈ [0, 2π).

(6) For each of the following geometric transformations, give a general matrix represent-

ing the map.

(a) Projection onto a line ` = span {u} ⊂ R3

(b) Reflection through a line ` = span {u} ⊂ R3

(c) Orthogonal projection onto the plane ax1 + bx2 + cx3 = 0

(d) Reflection across the plane ax1 + bx2 + cx3 = 0

(e) Rotation of R3 by an angle ϕ about an axis ` = span {u} (see problem (14) in

section 4 below on spatial rotations and the Rodriguez formula).

(7) Fix an angle θ ∈ [0, 2π). Let Rθ represent planar rotation about 0 by the angle θ,

and let

M1 =

 1 0

0 −1

 .
(a) By computing the product RθM1R

−1
θ , show that the reflection through a line

` = span


 cos θ

sin θ

 is given by

Ref`(x) =

 cos 2θ sin 2θ

sin 2θ − cos 2θ

x .

Compare with the formula obtained by computing Ref`(x) = (2proj` − I2)x.

(b) Let z = x1+ix2 be the complex number associated to the vector x = x1e1+x2e2.

By using Euler’s identity eiθ = cos θ + i sin θ, show that one can rewrite the

reflection through ` using the conjugation map z 7→ z̄ = x1 − ix2. In particular,

show that the reflection through ` = {seiθ : s ∈ R} is given by

z 7→ eiθ(e−iθz) = e2iθz̄ .
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(8) This problem deals with facts about left and write inverses of general functions. Let

X and Y be sets, and consider an abstract function f : X → Y .

(a) Prove that a function f : X → Y , , has a left inverse g if and only if it is injective

(one-to-one). Show that any left inverse g of f , if it exists, is surjective.

(b) Analogously, show that f is right invertible if and only if f is surjective (onto),

and that any right inverse h of f , if it exists, is injective.

(c) Show that f is (totally) invertible if and only if it is bijective, i.e., both injective

and surjective.

(9) Give necessary and sufficient conditions for an m × n matrix A ∈ Rm×n to be left

or right invertible. Describe an algorithm to compute either a left or right inverse,

presuming one exists, or to determine otherwise that none exists.
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2. Mid-Course Material

This section contains problems on material covered between the two midterms, excluding

the rank-nullity theorem.

(1) This set of problems expands upon the details of the cross product–determinant

connection. For these problems, use the following geometric definition of the cross

product:

Definition. For u,v ∈ R3, the cross product is the vector defined by the following

conditions:

i. u× v = 0 whenever u and v are parallel.

ii. For u and v linearly independent,

u× v := A(P)n̂P = ‖u‖‖v‖ sin(θ) n̂P ,

where P := {t1u+ t2v | t1, t2 ∈ [0, 1]} is the parallelogram in R3 with vertices 0,

u, v and u + v, n̂P is a unit normal to P such that (u,v.n̂P) is right handed,

A(P) is the area of P, and θ ∈ (0, π) is the (positive) angle through P between

the vectors u and v.

(a) Use the geometric definition to prove the following proposition giving the coor-

dinate method of computing the cross product.

Proposition. The three dimensional cross product is the 3-vector valued product

given by

(u,v) 7→ u× v =

∣∣∣∣∣∣ u2 u3
v2 v3

∣∣∣∣∣∣ e1 −
∣∣∣∣∣∣ u1 u3
v1 v3

∣∣∣∣∣∣ e2 +

∣∣∣∣∣∣ u1 u2
v1 v2

∣∣∣∣∣∣ e3 ,

where u = u1e1 + u2e2 + u3e3 and v = v1e1 + v2e2 + v3e3.

(b) Rigorously show that the triple product u · (v×w) is equal to the determinant∣∣∣ u v w
∣∣∣.

(c) Rigorously verify the following claim.

Claim. The vector triple product of u,v,w ∈ R3 computes the volume of the

parallelepiped

{x1u + x2v + x3w | 0 ≤ x1, x2, x3 ≤ 1} ⊂ R3 .

(d) Find a matrix representing the linear map u× : R3 → R3 that maps v to u× v.

(e) Verify that the following properties of the cross product hold without appealing

to coordinate calculations or brute force.

• (su)× v=s(u× v)=u× (sv),

• u× v = −(v × u),

• u× u = 0,

• u× (v + w) = u× v + u×w,

• u · (v ×w) = w · (u× v),

• u · (v ×w) = −v · (u×w).
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(2) A tetrahedron is a solid with four vertices, six edges, and four triangular faces. Rig-

orously demonstrate that if a tetrahedron has adjacent edges a1, a2, a3 ∈ R3 sharing

the vertex 0, then its volume is given by

1

6

∣∣∣det
Ä î

a1 a2 a3

ó ä∣∣∣ .
(3) Recall that Cramer’s Rule is the following proposition regarding the use of determi-

nants in solving systems.

Proposition. Let A ∈ Rn×n be an invertible square matrix. Suppose x is the unique

solution to a system Ax = b. If x = x1e1 + . . .+ xiei + . . .+ xnen, then

xi =
det(Ab,i)

det(A)

where Ab,i is the matrix obtained by replacing the ith-column of A with b.

(a) Write up a careful proof of Cramer’s rule.

(b) Recall that the definition of the classical adjugate matrix.

Definition. The adjugate matrix A∗ of a square matrix A is the matrix whose

(i, j)th entry is (−1)i+j det(Aij), i.e., the entries are the signed cofactors of A.

Prove the following corollary of Cramer’s Rule.

Corollary. If A ∈ Rn×n is an invertible matrix, then

A−1 =
1

det(A)
(A∗)t .

(c) Use the adjugate formula to confirm the inverse formula for 2× 2 matrices, and

then write out an explicit inverse formula for a generic 3× 3 matrix in terms of

its entries (aij).

(4) Let V and W be F-vector spaces, and T : V → W any linear map. Prove that the

image T (V ) ⊆ W is an F-vector subspace of W .

(5) Let U and W be subspaces of an F-vector space V .

(a) Show that U ∩W = {y ∈ V |y ∈ U and y ∈ W} is a subspace.

(b) Show that U ∪W = {y ∈ V |y ∈ U or y ∈ W} need not be a subspace.

(c) Show that U + W = {y ∈ V |y = u + w,u ∈ U,w ∈ W} is a subspace, and it

is the minimal subspace containing U ∪W , in the sense that any other subspace

of V containing U ∪W must also contain U +W .

(d) Argue that for general subspace U,W of an F-vector space V , the following holds:

dimF V = dimF U + dimFW − dimF(U ∩W ) .

(e) Suppose U ∩W = {0}. Show that dimF U + dimFW = dimF V
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3. Late-Course Material

This section contains problems on material after the second midterm, but before inner

product spaces and orthogonality.

(1) Recall the general rank nullity theorem.

Theorem (General Rank-Nullity Theorem). Let V be a finite dimensional F-vector

space, and let T : V → W be a linear map. Then

dimF V = dimF T (V ) + dimF kerT .

Use the theory of linear coordinates to give an alternate proof of this theorem

(recall, in class we gave a proof by constructing a basis tailored to the transformation,

which extends a basis of the kernel to one of the domain, and shows that the images

of the non-kernel vectors in the extended basis are a basis for the image).

(2) Recall that for a finite directed graph G = (V , E) with |V| = m and |E| = n we can

define an incidence matrix as follows:

Definition. The incidence matrix of G is the m × n matrix I(G) whose (i, j)-th

entry is equal to −1 if the j-th edge leaves the i-th vertex, +1 if the j-th edge enters

the i-th vertex, and 0 if the j-th edge is not incident with the i-th vertex. If G is

undirected, then the (i, j)-th entry is 1 if and only if the j-th edge is incident with

the ith vertex, and zero otherwise.

Recall also the terminology below.

Definition. A walk on a graph is an alternating sequence of vertices and edges

initiated and terminating in a vertex, with any consecutive vertex-edge or edge-vertex

pair incident. Thus, a walk can be specified by a sequence of coincident edges.

Definition. A walk is called a trail if there are no repeated edges.

Definition. A cycle is a walk which returns to the initial vertex, and a simple

cycle is a cycle which is also a trail.

Definition. If G is directed, then a simple cycle of G is associated to a vector x ∈ Rn,

called a weight vector, with components xi ∈ {+1,−1}, such that I(G)x = 0; an

edge has positive weight if the cycle traverses it according to its orientation, and

is negative if the edge is traversed against its orientation. Simple cycles on a (not

necessarily directed) graph are said to be independent if the corresponding weight

vectors are linearly independent (for some orientations of edges).
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Finally, recall the proposition:

Proposition. Let I(G) be the incidence matrix of a finite directed graph G = (V , E)

with m vertices and n edges.

(i.) The rank rank I(G) = m− k where k is the number of connected components of

G. In particular, for a connected graph, k = 1, and rank I(G) = m− 1.

(ii.) If G is connected, then its left null space is spanned by the vector e1+e2+. . .+em.

In particular, the column space of I(G) is the set of all x ∈ Rm perpendicular to

e1 + e2 + . . .+ em, and so the sum of components of such x must be zero.

(iii.) The null space Nul I(G) consists of vectors x ∈ Rn, whose components, thought

of as currents on the corresponding edges, yield a solution to Kirchhoff’s current

law in the absence of a current source: in matrix form the law reads Ax =

0. In particular, the dimension of the null space is the maximum number of

independent simple cycles in G.

Prove the proposition.

(3) Recall Euler’s formula for connected graphs:

max(# of indep. simple cycles)− (# of edges) + (# of vertices) = 1 .

Figure 1. The directed graph

G =
Ä
{v0, v1, v2, v3} , {(v0, v1), (v0, v2), (v0, v3), (v1, v2), (v1, v3), (v2, v3)}

ä
.

(a) For the graph in the figure above, write down an incidence matrix, and find bases

for the column and null spaces.

(b) Verify by hand that there are at most 3 independent cycles by using the picture.

(c) What if the orientations are altered? Will there always be 3 independent cycles?

(d) What would an acyclic graph look like?

(e) Construct some graphs with 0, 1, 2, and 11 cycles, and check Euler’s graph

formula for each.

(4) Recall the definition of an outer product of vectors.
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Definition. Given two vectors u ∈ Rm and v ∈ Rn, their outer product is the matrix

m× n

u⊗ v := uvt =


u1v1 u1v2 . . . u1vn

u2v1 u2v2 . . . u2vn
...

...
. . .

...

umv1 umv2 . . . umvn

 .

Show that every matrix which can be written as an outer product of two vectors

has rank at most 1. When is the rank 0?

(5) Recall the following definition.

Definition. An n-th order recurrence relation is a discrete relation of the form

xk = f(xk−n, xk−n+1, . . . xk−1) ,

for integers k ≥ n where f is some function. An n-th order recurrence is linear

homogeneous if f is a homogeneous linear function, i.e., if the recurrence relation

is of the form

xk = a0xk−n + a1xk−n+1 + . . .+ an−1xk−1 =
n−1∑
i=0

aixk−n+i ,

for numbers a0, . . . , an−1.

Consider a general homogeneous n-th order linear recurrence of the form

xn = a0x0 + . . . an−1xn−1 .

Recall that there is associated to such a system a companion matrix: writing

xk :=



xk−n+1

xk−n+2

...

xk−1

xk


, C :=

 0 In

at

 =



0 1 0 · · · 0

0 0 1
. . . 0

...
...

...
. . .

...

0 0 · · · 0 1

a0 a1 · · · · · · an−1


,

one can equivalently specify the recurrence by the first order matrix vector recurrence

xk = Cxk−1.

(a) Show that the polynomial tn −∑n−1
i=0 ait

i is the characteristic polynomial of the

associated companion matrix C.

(b) For any eigenvalue λ which is a root of order m of the characteristic polynomial,

show that xk = kpλk, is a solution of the recurrence equation for any p ∈
{0, 1, . . .m− 1}
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(c) Show that the general solution is given by linear combinations of terms of the

form kpλk. That is, show that any solution xk of the recurrence has form

xk =
l∑

i=1

ml∑
j=1

bi,jk
j−1λki

= λk1(b1,0 + b1,1k + . . . b1,m1k
m1−1)

+ . . . λkl (bl,0 + bl,1k + . . . bl,ml
kml−1) ,

where λ1 . . . λl are distinct eigenvalues of C with respective algebraic multiplici-

ties m1, . . . ,ml, and bi,j are constants.

(d) If one specifies values for x0, . . . xn−1, does this uniquely determine the constants

bi,j?

9
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4. Bitter-End-of-Course Material

This section contains problems on the dot product, inner products, and orthogonality.

(1) Recall the proposition giving properties of the Euclidean dot product

Proposition. Let u,v,w ∈ Rn be any real n-vectors, and s, t ∈ R be any scalars.

The Euclidean dot product (u,v) 7→ u · v satisfies the following properties.

(i.) The dot product is symmetric: u · v = v · u.

(ii.) The dot product is bilinear:

• (su) · v = s(u · v) = u · (sv),

• (u + v) ·w = u ·w + v ·w.

Thus in particular, for fixed w, the maps x 7→ w · x and x 7→ x · w are linear

maps valued in R.

(iii.) The dot product is positive definite: u · u ≥ 0 with equality if and only if

u = 0.

(a) Give a proof of this proposition using the coordinate formula

(u,v) =

(
n∑
i=1

uiei,
n∑
i=1

viei

)
7→

n∑
i

uivi .

(b) Give an alternate proof of each property above, assuming instead only the fol-

lowing geometric definition of a dot product.

Definition. For u,v ∈ Rn, with θ ∈ [0, π] the measure of the angle of separation

between the vectors u and v, as measured in a plane containing both u and v,

the dot product of u and v is the scalar

u · v = ‖u‖‖v‖ cos θ ,

where ‖ · ‖ is the usual Euclidean norm.

(2) A regular tetrahedron is a solid in R3 with four faces, each of which is an equilateral

triangle. Find the angles between the faces of a tetrahedron, which are dihedral

angles (a dihedral angle is an angle between the faces of a polyhedron).

(3) By a diagonal of a cube, we mean the line segment from one vertex of a cube to the

farthest vertex across the cube. By a diagonal of a cube’s face, we mean the diagonal

of the square face from one vertex to the opposite vertex of that face.

(a) Find the lengths of the diagonals of a cube and diagonals of faces in terms of

the side length of a cube.

(b) Find the angles between a diagonal of a cube and an adjacent edge of the cube.

(c) Each diagonal of the cube is adjacent to how many face diagonals? Find the

angle between a diagonal of a cube and an adjacent face diagonal.
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(4) Prove that, for any u,v ∈ Rn,

2 ‖u‖2 + 2 ‖v‖2 = ‖u + v‖2 + ‖u− v‖2 , and

u · v =
1

4

Å
‖u + v‖2 − ‖u− v‖2

ã
(5) Recall the definition of a norm on a vector space V .

Definition. A norm on an F-vector space V is a function ‖ · ‖ : V → F such that

the following properties hold for all u,v ∈ V and s ∈ F:

(i.) non-degeneracy: ‖u‖ ≥ 0 with equality if and only if u = 0,

(ii.) absolute homogeneity: ‖su‖ = |s|‖u‖, where | · | is a norm on the field F,

(iii.) sub-additivity: ‖u + v‖ ≤ ‖u‖+ ‖v‖.

Prove that any normed vector space (V, ‖ · ‖) can be made into an inner product

space with an inner product 〈·, ·〉 : V × V → F such that ‖u‖2 = 〈u,u〉.

(6) Consider linearly independent vectors u,v ∈ R2, and let P be the parallelogram

whose sides they span. Under what conditions are the diagonals of P orthogonal?

(7) Demonstrate via vector algebra that the diagonals of a parallelogram always bisect

each other.

(8) Prove the following proposition.

Proposition. Let W ⊂ Rn be any subspace. Then W⊥ is a subspace of Rn. Moreover,

the following statements are equivalent:

(a) y ∈ W⊥,

(b) y · v = 0 for every v ∈ S where W = spanS,

(c) y ∈ Nul Bt for any matrix B whose columns are an orthogonal basis of W ,

(d) ‖y −w‖ = ‖y + w‖ for every w ∈ W ,

(e) ‖y −w‖ is minimized if and only if w = 0

(9) Prove the following theorem, which is in essence an addendum to the Rank-Nullity

theorem (taken together, they form what Gilbert Strang calls the fundamental

theorem of linear algebra).

Theorem. Let A ∈ Rm×n. Then the orthogonal complement (Row A)⊥ of the row

space Row A is naturally isomorphic to the null space Nul A (via the isomorphism

Row A ∼= Col At), and the left nullspace Nul At is equal to to the orthogonal comple-

ment (Col A)⊥ of the column space Col A.

(10) Give a formula for a reflection through a subspace W ⊆ Rn using projection.

11
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(11) Let W ⊂ Rn be a proper nontrivial subspace. Consider the sequence of maps

0→ W → Rn → W⊥ → 0 ,

where the first two arrows are given by inclusion, the map to W⊥ is given by projec-

tion, and the final map is the trivial map.

(a) Show that the image of each map is the kernel of the next map. Such a chain

of maps, where the kernel of each map is the image from the previous map, is

called an exact sequence, and in this case, where there are four maps and the

first and last spaces of the sequence are both trivial, the sequence is called a

short exact sequence.

(b) For a general short exact sequence of linear maps of vector spaces

0→ V → W → U → 0 ,

argue that the first two arrows are injective maps, and the last two arrows are

surjective maps. Show that W ∼= V ⊕ U , i.e., that every w ∈ W can be written

uniquely as a sum of elements such that one is in the image of the map coming

from V and the other is in the complement of the kernel of the map from W .

(12) Prove the following proposition.

Proposition. Let {u1, . . . ,up} be an orthonormal basis of a subspace W ⊆ Rn and

let U =
î

u1 . . .up
ó
. Then for any y ∈ Rn

projW (y) = UUty = (U⊗ U)y .

(13) In analogy to the subspace test for vector spaces and using the previous problem

as your starting model, devise and prove a subgroup test to determine whether a

subset H of a group G is itself a group with respect to the operation it inherits from

G.

(14) In this exercise you will derive a general matrix formula for spatial rotations, called

the Rodriquez formula, and then explore the structure of SO(3). Fix a unit axial

vector û ∈ Rn and an angle ϕ ∈ [0, 2π).

(a) Show that the rotation of a vector x about the axis span {û} by an angle of ϕ

counterclockwise (relative to the view from the tip of û towards 0) is given by

Rû
ϕ(x) =

Ä
1− cos(ϕ)

ä
proj û(x) + cos(ϕ)x + sin(ϕ)û× x .

This is the Rodriguez formula for spatial rotation.

(b) Use the preceding part to write out a matrix U such that Rû
ϕ(x) = Ux, in terms

of the components of û and the angle ϕ.

(c) What are the eigenvalues and complex eigenvectors of the matrix U associated

to Rû
ϕ(x) (hint: do not try to compute the characteristic polynomial directly

from the matrix).
12
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(15) Show that the elements of O(3) that are not in SO(3) decompose as products of a

reflection matrix for reflection though a plane and a matrix in SO(3). Show that any

matrix in O(3) decomposes as a product of just reflection matrices for reflections

through a system of planes. What’s the maximum number of reflections needed?

(16) Let
Ä
V, 〈·, ·〉

ä
be an inner product space. Let ‖ · ‖ be the 2-norm induced by the inner

product 〈·, ·〉. Use the Cauchy-Schwarz inequality to prove the triangle inequality

‖u− v‖ ≤ ‖u‖+ ‖v‖ .

(17) Give another argument for the Cauchy-Schwarz inequality, using the idea of best

approximation in a subspace.

(18) Verify that the setÇ
1√
2
, sin t, cos t, sin 2t, cos 2t, . . . , sinnt, cosnt

å
is an orthonormal basis of the space of real trigonometric polynomials Tn of degree

≤ n with the inner product structure given by

〈f, g〉 =
1

π

∫ π

−π
f(t)g(t) dt .

In particular, you must show that this set spans Tn as well as showing the orthonor-

mality of the elements.
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