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Linear Combinations in an F-Vector Space

F-Linear Combinations

Definition

Let V be an F-vector space.

Given a finite collection of vectors {v1, . . . , vk} ⊂ V , and a
collection of scalars (not necessarily distinct) a1, . . . , ak ∈ F, the
expression

a1v1 + . . . + akvk =
k∑

i=1

aivi

is called an F-linear combination of the vectors v1, . . . , vk with
scalar weights a1, . . . ak .

It is called nontrivial if at least one ai 6= 0, otherwise it is called
trivial.
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Linear Combinations in an F-Vector Space

F-Linear Spans

Definition

The F-linear span of a finite collection {v1, . . . , vk} ⊂ V of vectors
is the set of all linear combinations of those vectors:

Span F{v1, . . . , vk} :=

{
k∑

i=1

aivi

∣∣∣∣ ai ∈ F, i = 1, . . . , k

}
.

If S ⊂ V is an infinite set of vectors, the span is defined to be the
set of finite linear combinations made from finite collections of
vectors in S .
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Linear Combinations in an F-Vector Space

Spans are Subspaces

Recall:

Proposition

Let V be an F-vector space. Given a finite collection of vectors
S ⊂ V , the span Span (S) is a vector subspace of V .

This was proven last time.
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Linear Dependence and Independence

Definition of Linear Dependence/Independence

Definition

A collection {v1, . . . , vk} ⊂ V of vectors in an F-vector space V
are called linearly independent if and only if the only linear
combination of v1, . . . , vk equal to 0 ∈ V is the trivial linear
combination:

{v1, . . . , vk} linearly independent ⇐⇒Ä k∑
i=1

aivi = 0 =⇒ a1 = . . . = ak = 0
ä
.

Otherwise we say that {v1, . . . , vk} is linearly dependent.
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Linear Dependence and Independence

Criteria for Dependence

Proposition

An ordered collection of vectors (v1, . . . , vk) with v1 6= 0 is linearly
dependent if and only if there is some vi ∈ {v1, . . . , vk}, i > 1
which can be expressed as a linear combination of the preceding
vectors vectors vj for j < i .

If any vi = 0 in a collection of vectors, that set is linearly
dependent.

A. Havens Linear Independence, Basis, and Dimensions



Linear (In)dependence Revisited Basis Dimension Linear Maps, Isomorphisms and Coordinates

Linear Dependence and Independence

Example

Let V = Rn, and suppose {v1, . . . , vk} ⊂ Rn is a collection of
k ≤ n vectors. Then we have the following proposition:

Proposition

The set of vectors {v1, . . . , vk} is linearly independent if and only
if the matrix A = [v1 . . . vk ] has k pivot positions.

Proof.

Consider the system Ax = 0. If NulA 6= {0}, then there’s some
nonzero x ∈ Rk such that

∑k
i=1 xivi = 0, which implies that

{v1, . . . , vk} is linearly dependent. Thus, {v1, . . . , vk} is linearly
independent if and only if NulA is trivial, which is true if and only
if there k pivot positions.
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Linear Dependence and Independence

Towards Bases and Coordinates

How do we tell if, e.g., a collection of polynomials in Pn(R) are
linearly independent? It would be nice to have an analogue of this
result for general collections of vectors in any F-vector space.

If a vector space V is spanned by a finite set, we will have an
analogous result; but first we need to define a notion of basis and
linear coordinates.

Using the idea of basis, we’ll discover that a finite dimensional
vector space V can be understood as being structurally equivalent
in a precise way to some Fn, which allows us to define coordinates.

With coordinates, we can turn a collection of vectors in V into
some matrix whose columns are in Fn. Such matrices can represent
linear maps and linear systems, measure linear independence, et
cetera.
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Defining Basis

Finite Dimensional versus Infinite Dimensional

Definition

A vector space V over F is called finite dimensional if and only if
there exists a finite collection S = {v1, . . . , vm} ⊂ V such that the
F-linear span of S is V . If no finite collection of vectors spans V ,
we say V is infinite dimensional.

A key result for our discussion is the following:

Proposition

Any nontrivial finite dimensional F-vector space V contains a
linearly independent set B ⊂ V such that SpanB = V , and
moreover, any other such set B′ ⊂ V such that SpanB′ = V has
the same number of elements as B.
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Defining Basis

Definition of Basis

We’ll want to use the size of such a finite set B spanning V to
define dimension of V . The preceding proposition, once proved,
guarantees that dimension is well defined. Before proving the
proposition, we need some terminology and a lemma.

Definition

Given a vector space V over F, we say that a linearly independent
set B such that V = Span FB is a basis of V .
An ordered basis is a basis which has a specified order for the
vectors, B = (v1, . . . , vn).

Example

The standard basis (e1, e2, . . . , en) previously defined is an ordered
basis of Rn.
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Defining Basis

Standard basis of Fn

Example

For any field F, let Fn = F× . . .× F︸ ︷︷ ︸
n times

be the set of all n-tuples of

elements of F. This is naturally an F-vector space with
component-wise addition and scaling, analogous to Rn.

The standard basis of Fn is the set BS := (e1, . . . , en) consisting of
the vectors which are columns of In. In particular, for any x ∈ Fn:

x =

 x1
...
xn

 = x1e1 + . . . + xnen =
n∑

i=1

xiei .

Clearly, the vectors of BS are linearly independent since they are
columns of the identity matrix.
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Defining Basis

Example: Bases for spaces of Polynomials

Example

Since any polynomial p(x) ∈Pn(F) can by definition be written in
the form

p(x) =
n∑

k=0

akx
k , a0, . . . , an ∈ F ,

we see that the monomials 1, x , . . . , xn span Pn(F).

But by definition, if a polynomial p(x) is the zero polynomial, all
of its coefficients a0, . . . , an must be zero. This implies that
{1, x . . . , xn} is a linearly independent set, and thus a basis for
Pn(F) as an F vector space.
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Defining Basis

Example: Basis of C as a Real Vector Space

Example

The complex numbers C = {a(1) + b(i) | a, b ∈ R, i =
√
−1} can

be regarded as a real vector space. Indeed, any complex number is
a real linear combination of the real multiplicative unity 1 and the
“imaginary unit” i =

√
−1.

Thus C = Span R{1, i} is a real vector space. Clearly, 1 and i are
independent, so (1, i) gives an ordered basis of C as a real vector
space.

Can you give another basis of C as a real vector space, e.g., one
whose elements are both strictly complex? What’s an example of a
basis for C as a complex vector space?
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Spanning sets versus Basis

A Lemma

A spanning set S such that Span FS = V need not be linearly
independent. The key thing about a basis is that it is a spanning
set which is linearly independent, and so in a sense has the
minimum number of elements needed to build the space V with
linear combinations.

The following lemma, which we will use in proving the proposition,
captures this idea that a basis is more minimal than a general
spanning set might be:

Lemma

If S ⊂ V is a finite set and B ⊂ SpanS is a linearly independent
set, then |B| ≤ |S |.
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Spanning sets versus Basis

Proving the Lemma

Proof.

Let S = {v1 . . . vm} and suppose B ⊂ SpanS is a linearly
independent set. Choose some finite subset E ⊂ B. Since B is
linearly independent, so is E .

Suppose E = {u1, . . .uk}. Since E ⊂ SpanS , there’s a linear
relation uk = a1v1 + . . . amvm.

Since uk 6= 0 by linear independence of E , we deduce that at least
one aj 6= 0. W e may assume that a1 6= 0, whence we can write v1
as a linear combination of {uk , v2 . . . vm}.
Observe that by construction E ⊂ Span F{uk , v2 . . . vm}. Thus
uk−1 ∈ {uk , v2 . . . vm}, and repeating the argument above we have
that v2 ∈ Span F{uk ,uk−1, v3 . . . vm} and
E ⊂ Span F{uk ,uk−1, v3 . . . vm}.
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Spanning sets versus Basis

Proving the Lemma

Proof (continued).

We can repeat this procedure until either we’ve used up E , in
which case k ≤ m, or until we run out of elements of S .

If we were to run out of elements of S without running out of
elements of E , then since E is in the span of each of the sets we
are building, we’d be forced to conclude that there are elements of
E which are linear combinations of other elements in E ,
contradicting the linear independence of E .

Thus, it must be the case that |E | = k ≤ m = |S |. Finally, since
any finite subset E ⊂ B has no more elements than the finite set
S , B is itself finite, and |B| ≤ |S |, as desired.
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Spanning sets versus Basis

Proving the Proposition

With this lemma we can now prove the proposition.

Proof.

Let V be a nontrivial finite dimensional F-vector space. Observe
that because the V is finite dimensional, by definition there exists
a subset S ⊂ V such that SpanS = V .

If S is linearly independent then we merely have to show that no
other linearly independent set has a different number of elements.

On the other hand, if S is linearly dependent, we can remove any
vector which is a linear combination of the remaining vectors
without altering the span: Span F(S) = Span F(S − {w})
whenever w ∈ Span F(S − {w}).

A. Havens Linear Independence, Basis, and Dimensions



Linear (In)dependence Revisited Basis Dimension Linear Maps, Isomorphisms and Coordinates

Spanning sets versus Basis

Proving the Proposition (continued)

Proof (continued).

Indeed, since Span FS is the set of F-linear combinations of the
vectors in S , if we throw a vector w out of S which is a linear
combination of elements from S − {w}, the set S − {w} still
contains w in its span, and hence any other linear combination
which potentially involved w can be constructed using only
S − {w}.

Then since S is finite, we can remove at most finitely many vectors
in S without changing the span. Thus, after throwing out finitely
many vectors, we have a set B which is linearly independent, such
that Span FB = Span FS = V .
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Spanning sets versus Basis

Proof (continued).

It now remains to show that the size of any linearly independent
set B′ which also spans V is the same as that of B.

Suppose |B| = n and |B′| = m. Since SpanB = V ⊃ B′ and B′

is linearly independent, we deduce that m ≤ n from the lemma.

We similarly conclude that since SpanB′ = V ⊃ B and B is
linearly independent, n ≤ m. Thus m = n and we are done.
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Spanning sets versus Basis

Bases: Minimality and Maximality

The proposition we just proved says that any finite dimensional
vector space has a basis, and the size of a basis is the minimum for
a spanning set and gives a well defined invariant of V (meaning it
doesn’t depend on a choice of basis).

We can thus characterize a basis of a finite dimensional vector
space V as follows:

A basis for V is a spanning set of V of the minimum size:
every vector in V is a linear combination of the basis
elements, and no smaller set spans V .

A basis for V is a linearly independent set of maximum size: if
you try to construct any set larger than the basis, there will be
a linear dependency relation among the elements.
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Definition of Dimension and Examples

Defining Dimension

Definition

Given a finite dimensional vector space V over F, the dimension of
V is the size of any F-basis of V :

dimF V := |B| ,

where V = Span FB and B is linearly independent.

Remark

The subscript F is necessary at times, since a given set V may
have different vector space structures over different fields, and
consequently different dimensions. Specifying the field removes
ambiguity. However, if the field is understood, the subscript may
be dropped.
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Definition of Dimension and Examples

Example

Example

The complex numbers C, regarded as a real vector space, have a
basis with two elements: {1, i} as described above, and thus
dimRC = 2.

But as a C-vector space, a basis choice for C could be any nonzero
complex number, and in particular, {1} is a basis of C as a vector
space over C, so dimCC = 1.

More generally, dimRCn = 2n while dimCCn = n.

Note that for any field, dimF Fn = n, which is established by
considering at the standard basis.
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Definition of Dimension and Examples

Convention Going Forward

Many of the easiest and most informative examples tend to involve
real numbers and concrete computations.

Thus, henceforth (in this and future slide shows) to make notation
less cumbersome, we may write SpanS := Span RS and
dim S = dimR S whenever S is a real subset of a vector space V
over R. More generally, if S is a subset of an F-vector space for
some field F, like C or Q, dimS := dimF S and SpanS := Span FS
should be understood.

Theorems will still be stated as generally as possible (for vector
spaces over an arbitrary field F), but as always, you should try to
relate the results to your intuition for vectors in spaces such as Rn.
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Definition of Dimension and Examples

Example: Bases and Dimensions for Spaces of Matrices

Example

We can give an analogue of the standard basis in the case that our
vector space is the space of real m × n matrices, Rm×n. Define
BS = {Eij | 1 ≤ i ≤ m, 1 ≤ j ≤ n, i , j ∈ N} such that Eij is the
matrix containing a single 1 in the (i , j)-th entry, and zeros in all
other entries.

Then Rm×n = Span RBS . To show BS is a basis we have to check
that the matrices are linearly independent.

But if 0m×n =
m∑
i=1

n∑
j=1

aijEij , then clearly aij = 0 for all indices i

and j . Thus, BS is a basis of the space of m × n real matrices
Rm×n, and dimRm×n = mn.
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Definition of Dimension and Examples

Example: Dimensions of Spaces Polynomials

Example

As established above, the set of monomials {1, x , . . . xn} are a
basis for the space Pn(F) of polynomials of degree ≤ n with
coefficients in F.

Thus, dim Pn(F) = n + 1.

Consider P(F), the space of all polynomials with coefficients in F.
Can we describe a basis? What is its dimension?
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Definition of Dimension and Examples

Example: Dimensions of Spaces Polynomials

Example

No finite basis can exist for P(F), since, given any finite list of
polynomials, there is a maximal degree, while there are elements of
P(F) of arbitrarily large degree.

Thus P(F) is not finite dimensional.

However, since any given polynomial is a finite linear combination
of monomials of bounded degree, P(F) = Span F{xk | k ∈ Z≥0}.
Since the only way to make the zero polynomial with monomials is
to take all coefficients to be zero, {xk | k ∈ Z≥0} is a linearly
independent set.

Since {xk | k ∈ Z≥0} is a linearly independent set spanning P(F),
it provides a basis of P(F).
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Dimension of Subspaces of finite Dimensional Vector Spaces

Basis of a Subspace

Since a subspace is itself a vector space, the proposition we proved
implies we can find some subset E ⊂W of any nontrivial subspace
W of an F-vector space such that W = Span F(E ) and E is
linearly independent.

One then says E is a basis of the subspace W .

Given a non-trivial subspace W of an F-vector space with basis E ,
one can always extend E to a basis of V .
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Dimension of Subspaces of finite Dimensional Vector Spaces

Example: Dimensions of Subspaces in R2 and R3

Example

A line in R2 through 0 is a proper subspace of R2, and can be
described as the real span of a single nonzero vector v.

Thus lines in R2 are one dimensional subspaces.

To extend to a basis of R2, we need just one additional vector, not
parallel to v.

Example

Recall that a plane Π through 0 in R3 is a subset of R3 which is
the solution space of a homogeneous equation of the form

ax1 + bx1 + cx3 = 0 .

We can express this as a span of two vectors in many ways.
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Dimension of Subspaces of finite Dimensional Vector Spaces

Example

For example

Π := Span R


 b
−a
0

 ,
 c

0
−a


 = Span R


 −c0

a

 ,
 0

c
−b


 .

Thus {be1 − ae2, ce1 − ae3} and {ae3 − ce1, ce2 − be3} are both
bases of Π, and dim Π = 2.

To extend to a basis of R3 it suffices to add any vector not in Π,
since dimR3 = 3 = 1 + dim Π. For example, we can add in a
normal vector to the plane, such as n = ae1 + be2 + ce3.
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Dimension of Subspaces of finite Dimensional Vector Spaces

Rank: The Dimension of the Column Space

For linear maps and for matrices, we have special names for the
dimensions of associated subspaces.

Definition

The rank of a linear map T : V →W between finite dimensional
F-vector spaces V and W is the dimension of the image:

rankT = dimF T (V ) .

Given a matrix A ∈ Fm×n, the rank of A is the dimension of the
column space of A:

rankA = dimFColA .
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Dimension of Subspaces of finite Dimensional Vector Spaces

Nullity: The Dimension of the Null Space

Definition

The nullity of a linear map T : V →W between finite dimensional
F-vector spaces V and W is the dimension of the kernel:

nullT = dimF kerT .

Given a matrix A ∈ Fm×n, the nullity of A is the dimension of the
null space of A:

null A = dimFNulA .
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Dimension of Subspaces of finite Dimensional Vector Spaces

Computing Rank and Nullity

Remark

One can compute the rank of a matrix A by determining a linearly
independent subset of the columns of A which span ColA. The
pivot columns of A are precisely such a collection; they give a basis
of ColA! Thus the number of pivot positions of A is the rank.

One can compute the nullity of a matrix A by determining the
number of non-pivot columns. The non-pivot columns of A
determine the number of free variables for the homogeneous
equation, and thus, the number of vectors needed to build a basis
of NulA.

We will soon prove this carefully, and its generalization for any
linear map between finite dimensional vector spaces.
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Building Transformations using Bases

Matrices Encoding R-Linear Maps

Recall, to any linear map T : Rn → Rm we can uniquely associate
a matrix A such that T (x) = Ax, and

A =
î
T (e1) . . . T (en)

ó
,

where e1, . . . , en are the standard basis elements of the ordered
basis BS .

Conversely, given a matrix A ∈ Rm×n, there is a uniquely
determined linear map T whose image is the span of the columns
of A.

To generalize this, we might seek a method of describing linear
maps by determining how they affect a basis. Then we can try to
associate matrices to linear maps T : V →W given a basis of V .
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Building Transformations using Bases

An Analogue

Given a finite dimensional F-vector space V with a basis
B = {v1, . . . , vn}, and a linear transformation T : V →W for W
another F-vector space, we wish to understand what the set
{T (v1), . . . ,T (vn)} tells us about T .

The first observation is that the image T (V ) is spanned by these
vectors. Indeed, if w ∈ T (V ), then there is some u ∈ V such that
w = T (u), and u can be written in terms of the basis B: if
u = c1v1 + . . . + cnvn then
w = T (c1v1 + . . . + cnvn) = c1T (v1) + . . . cnT (vn).
This establishes that
T (V ) = Span FT (B) = Span F{T (v1), . . . ,T (vn)}.
We can say better: given the basis B of V , the map T : V →W
is uniquely determined by the images.
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Building Transformations using Bases

Linear Maps are determined by their effect on a basis

Theorem

Given an n-dimensional F-vector space V with basis
B = {v1, . . . , vn}, and given a collection of n not necessarily
distinct vectors w1, . . . ,wn ∈W, there is a unique linear map
T : V →W such that wi = T (vi ), i = 1, . . . , n. Moreover, any
linear map T : V →W can be built in this way.

Proof.

For any u ∈ V we can write u as a linear combination of the basis
vectors: u = c1v1 + . . . + cnvn.

Suppose T : V →W is a linear map which satisfies the conditions
T (v1) = w1, . . . ,T (vn) = wn. Then the claim is that the value
T (u) is determined uniquely.
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Building Transformations using Bases

Extending by linearity

Proof.

Indeed, since T is linear, one has

T (u) = T
(∑n

i=1 civi
)

=
∑n

i=1 ciT (vi ) =
∑n

i=1 ciwi .

Moreover, we may construct a unique T from the data T (vi ) = wi

by the above formula, and define this to be the linear extension of
the map on the basis.

Finally, given an arbitrary map T̃ : V →W , we can restrict our
attention to its affect on B, defining wi := T̃ (vi ). Then the image
T̃ (u) of any u = c1v1 + . . . + cnvn satisfies
T̃ (u) = c1w1 + . . . + cnwn, which is just the linear extension of the
map on basis elements vi 7→ wi = T̃ (vi ).
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Isomorphisms

Definition of a Linear Isomorphism

Definition

A linear isomorphism from an F-vector space V to an F-vector
space W is a bijective linear map Φ : V →W . In particular, Φ is
an invertible linear map from V to W .
If there is an isomorphism Φ : V →W , then Φ−1 : W → V is also
an isomorphism. Will will thus say things such as “V is isomorphic
to W ”, “W is isomorphic to V ”, or “V and W are isomorphic,”
and write V ∼= W .

Isomorphisms preserve dimension; they can be viewed as maps
realizing the structural equivalence of a pair of vector spaces.
Isomorphisms are an example of an equivalence relation.

We can apply the above theorem on determining linear maps to
understand how isomorphisms arise from transformations of bases.
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Isomorphisms

Theorem on Building Isomorphisms

Theorem

Let V and W be finite dimensional F-vector spaces, and suppose
BV is a basis of V and BW is a basis of W . Then

if V and W are isomorphic, then they have the same
dimension, and so |BV | = |BW |, and

if |BV | = |BW |, then there exists an isomorphism
Φ : V →W which is induced by linear extension of a bijective
map Φ̂ : BV → BW .

Proof.

This is left as an exercise (challenge problem). The main point is
to use the definitions of dimension and isomorphism, and then
apply the theorem on using linear extension to determine a linear
map.
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Endomorphisms and Automorphisms

Definition

A linear endomorphism of an F-vector space V is a linear map
T : V → V . An endomorphism which is an isomorphism is called a
vector space automorphism. Thus a linear automorphism is just an
invertible linear map T : V → V .
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Example: Linear Automorphisms of Rn

If A is an invertible n × n matrix, then the map T (x) = Ax is an
automorphism.

Since the columns of A are the images of the standard basis
vectors, by the theorem on constructing isomorphisms, we can
conclude that the columns of A form a basis of Rn.

We also could conclude this via the invertible matrix theorem: we
know that for A to be invertible, the columns must span Rn and
must be linearly independent.

Conversely, any linear automorphism T : Rn → Rn is associated to
an invertible matrix A =

î
a1 . . . an

ó
, and can be viewed as a

rising from a correspondence between elements of the standard
basis and elements of a new basis {a1, . . . , an}.
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Examples: Polynomial Spaces and Space of Matrices

Example

Let Pn := Pn(R) = Span R{1, t, t2, . . . tn} be the space of real
polynomials of degree ≤ n. There is a one-to-one correspondence
between monomials {1, t, . . . , tn} and elements e1, e2, . . . , en, en+1

of the standard basis of Rn+1. Observe that the correspondence is
not unique.

Thus Pn is isomorphic to Rn+1.

Exercise

Can you identify an isomorphism from Rm×n to Rmn?
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B-Coordinates

Definition

Let V be an n-dimensional F-vector space, and let
B = (v1, . . . , vn) be an ordered basis of V . Then a given x can be
written as a linear combination x = c1v1 + . . . + cnvn. The vector

[x ]B =

 c1
...
cn

 ∈ Fn

is called the B-coordinate vector for x, and the numbers c1, . . . cn
are called the coordinates of x relative to the basis B.
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Remark

The B-coordinate vector [x]B of x ∈ V is the image of x under
the isomorphism determined by mapping the ordered basis
B = (v1, . . . , vn) of V onto the standard ordered basis
BS = (e1, . . . , en) of Fn. This isomorphism sending x 7→ [x]B is
called the coordinate map for the basis B, or the B-coordinate
map/isomorphism.

We will see momentarily that we can compute coordinate vectors
of real vectors x relative to a given basis by solving a system of
equations. In this case, the coordinate isomorphism arises as an
inverse to an automorphism determined by an invertible matrix
describing a map of the standard basis onto a new basis.
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Example: Change of basis of R2

Example

Let b1 = e1 + 2e2, b2 = e1 + 3e2. Then note that B = (b1,b2) is
a basis of R2. Find the B-coordinate vector of x = 8e2 − 7e1.

Solution: The coordinate vector [x ]B = c1e1 + c2e2 has
components that satisfy x = c1b1 + c2b2. We can thus write a
system: î

b1 b2

ó
[x ]B = PB[x ]B = x .ñ

1 1 −7
2 3 8

ô
∼
ñ

1 0 −29
0 1 22

ô
.

Thus the B-coordinate vector of x is

[x ]B =

ñ
−29
22

ô
.
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Coordinates relative to a Basis

Example: Change of basis of R2

Example

Let b1 = e1 + 2e2, b2 = e1 + 3e2. Then note that B = (b1,b2) is
a basis of R2. Find the B-coordinate vector of x = 8e2 − 7e1.

Solution: The coordinate vector [x ]B = c1e1 + c2e2 has
components that satisfy x = c1b1 + c2b2. We can thus write a
system: î

b1 b2

ó
[x ]B = PB[x ]B = x .ñ

1 1 −7
2 3 8

ô
∼
ñ

1 0 −29
0 1 22

ô
.

Thus the B-coordinate vector of x is

[x ]B =

ñ
−29
22

ô
.
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Coordinate Transformations

Let B be a basis for Fn. The equation PB[x ]B = x implies that
[x ]B = P−1B x. The matrix PB is the change of basis matrix for the
basis change B 7→ BS where BS = (e1, . . . , en) is the standard
basis, and P−1B is the matrix for the change of basis BS 7→ B.

Changing coordinates is one of the few situations where one might
actually use the inverse of a matrix rather than reduction: if only a
few vector’s coordinates are needed, then it makes sense to just
use row operations, but if one may need to routinely switch
between coordinates for many vectors, it may be simpler to
compute and store the change of basis matrices.
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Coordinates for Subspaces

If W ⊆ V is a subspace with basis BW = (w1, . . . ,wk), then one
can describe elements of W by coordinate vectors in Fk .

Example

Let Π be the plane with equation 2x1 − x2 + 3x3 = 0. Find a basis
B for Π and express the point P(−4, 10, 6) as a coordinate vector
[p]B relative to this basis.

Solution: The plane Π is given by a single homogeneous equation
in three variables, and consequently has two free variables. Writing
2s = x2 and 2t = x3 (so as to avoid fractions), and solving for x1,
a solution vector in Π can be written as

x = (s − 3t)e1 + 2se2 + 2te3 = s(e1 + 2e2) + t(−3e1 + 2e3).

Thus, Π = Span {e1 + 2e2,−3e1 + 2e3}.
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Coordinates for Subspaces

If W ⊆ V is a subspace with basis BW = (w1, . . . ,wk), then one
can describe elements of W by coordinate vectors in Fk .

Example

Let Π be the plane with equation 2x1 − x2 + 3x3 = 0. Find a basis
B for Π and express the point P(−4, 10, 6) as a coordinate vector
[p]B relative to this basis.

Solution: The plane Π is given by a single homogeneous equation
in three variables, and consequently has two free variables. Writing
2s = x2 and 2t = x3 (so as to avoid fractions), and solving for x1,
a solution vector in Π can be written as

x = (s − 3t)e1 + 2se2 + 2te3 = s(e1 + 2e2) + t(−3e1 + 2e3).

Thus, Π = Span {e1 + 2e2,−3e1 + 2e3}.

A. Havens Linear Independence, Basis, and Dimensions



Linear (In)dependence Revisited Basis Dimension Linear Maps, Isomorphisms and Coordinates

Coordinates relative to a Basis

Coordinates for Subspaces

Example

To find the coordinates of the given point, we solve the system −4
10
6

 =

 1 −3
2 0
0 2

 ñ c1
c2

ô
, which is equivalent

to the augmented matrix

1 −3 −4
2 0 10
0 2 6

 ∼
1 0 5

0 1 3
0 0 0

.

Thus that the coordinate vector for the point P(−4, 10, 6) relative
to the basis B = (e1 + 2e2,−3e1 + 2e3) is

[p]B =

ñ
5
3

ô
.
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Checking Linear Independence/Dependence

Proposition

Let B = {v1, . . . vn} be any basis of a vector space V , and
suppose {u1, . . .uk} ⊂ V are a collection of k ≤ n vectors. Then
{u1, . . .uk} is a linearly independent set if and only if the matrixî

[u1]B . . . [uk ]B
ó

has k pivot columns.

Proof.

We prove the contrapositive: that {u1, . . .uk} is linearly dependent
if and only if there are fewer than k pivot columns in the matrixî

[u1]B . . . [uk ]B
ó
.
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Proof Using Contrapositive: Lifting Dependence Relations

Proof.

Consider a linear combination building the zero vector:
x1[u1]B + . . . + xk [uk ]B = 0. Applying the inverse coordinate map
Φ−1B : Fn → V to the linear combination x1[u1]B + . . . + xk [uk ]B:

Φ−1B (x1[u1]B + . . . + xk [uk ]B) = x1u1 + . . . xkuk = Φ−1B (0) = 0 .

The set {u1, . . .uk} is linearly dependent if and only if at least one
xi in the above combination is nonzero, which is true if and only if
the original linear combination gives a nontrivial x =

∑k
i=1 xiei

such thatî
[u1]B . . . [uk ]B

ó
x = x1[u1]B + . . . + xk [uk ]B = 0,

which is true if and only if the null space is nontrivial, which is true
if and only if there are fewer than k pivot columns.
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Example Checking Linear Independence

Example

Let P2 = {a0 + a1t + a2t
2 | a0, a1, a2 ∈ R}. Check that the

polynomials 1 + 2x , 2− 3x2, −1− x + x2 are linearly independent
in P2.

Solution: Let B = {1, t, t2} be the monomial basis for P2. Then
there is a coordinate isomorphism ϕ2 : P2 → R3 sending a
polynomial p(t) = a0 + a1t + a2t

2 to the coordinate vector

[p(t)]B =

 a0
a1
a2

 .
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Example Checking Linear Independence

Example

Then to the set of polynomials given we can use ϕ2 to associate a
matrixî

[1 + 2t]B [2− 3t2]B [−1− t + t2]B
ó

=

 1 2 −1
2 0 −1
0 −3 1

.

Then since RREF

 1 2 −1
2 0 −1
0 −3 1

 =

 1 0 0
0 1 0
0 0 1

, we conclude

that the polynomials 1 + 2t, 2− 3t2, −1− t + t2 are linearly
independent in P2

Had they been dependent, we could use the inverse coordinate
map to lift a linear dependency from R3 to P2.
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Expressing Linear Maps in Coordinates with Matrices

Coordinates allow us to express linear maps between general finite
dimensional vector spaces using matrices.

Let V be be an n-dimensional vector space with basis B and
B-coordinate map ΦB, and let W be an m-dimensional vector
space with basis B′ and B′-coordinate map ΨB′ . Thus, ΦB and
ΨB′ give isomorphisms V ∼= Fn and W ∼= Fm.

Suppose you wanted to express a linear map T : V →W using a
matrix with coefficients in F. That is, you want to understand how
to go from a coordinate vector [x]B ∈ Fn representing x ∈ V to
the coordinate vector [T (x)]B′ in Fm representing its image T (x)
in W , using a matrix-vector product.
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Expressing Linear Maps in Coordinates With Matrices

Let LT ;B,B′ : Fn → Fm be the linear transformation giving the
coordinate map [x]B 7→ [T (x)]B′ . The diagram below shows how
the maps T , ΦB, ΨB′ and LT ;B,B′ fit together into what is called
a commutative square diagram.

T
V W

Fn Fm

ΦB ΨB′

LT ;B,B′

Here, commutative means that the different ways of getting from
the top left to the bottom right yield the same image:
ΨB′ ◦ T = LT ;B,B′ ◦ ΦB.
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Expressing Linear Maps in Coordinates With Matrices

Since ΨB′ ◦ T = LT ;B,B′ ◦ ΦB and ΦB is an isomorphism, and
thus invertible, we can solve for LT ;B,B′ in terms of T , ΨB′ and
Φ−1B : LT ;B,B′ = ΨB′ ◦ T ◦ Φ−1B .

We thus seek a matrix PB,B′ ∈ Fm×n representing the map
ΨB′ ◦ T ◦Φ−1B : Fn → Fm, and thus representing the effect of T in
coordinates.

The j-th column of PB,B′ is LT ;B,B′(ej), which equivalently
corresponds to computing the B′-coordinate representations of the
images T (vi ) of basis vectors vi ∈ B.
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The (B,B′)-Matrix of a linear Map

Theorem

Let V be be an n-dimensional vector space with basis
B = (v1, . . . , vn) and let W be an m-dimensional vector space
with basis B′ = (w1, . . . ,wm). Given a linear map T : V →W,
the matrix PB,B′ of the associated coordinate transformation
[x]B 7→ [T (x)]B′ is uniquely determined and has the form

PB,B′ =
î

[T (v1)]B′ . . . [T (vn)]B′
ó
.
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Proof.

Let LT ;B,B′ : Fn → Fm be the map such that
LT ;B,B′([x]B) = [T (x)]B′ . It is easy to check that this is a linear
map. Let PB,B′ be the matrix representing it. It suffices to
compute LT ;B,B′(ej) to obtain the columns of PB,B′ .

Let ΦB : V → Fn be the B-coordinate map and ΨB′ : W → Fn

be the B′-coordinate map. Then since ΦB(vj) = ej ,

LT ;B,B′(ej) = ΨB′ ◦ T ◦ Φ−1B (ej) = ΨB′ ◦ T ◦ Φ−1B

Ä
ΦB(vj)

ä
= ΨB′

Ä
T (vj)

ä
= [T (vj)]B′
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Example: The Derivative of a Quadratic Polynomial

We will illustrate this with a simple example: computing a matrix
representing the derivative map acting on real degree two
polynomials P2, giving real degree one polynomials in P1 .

Example

Construct a matrix representing the linear map

d

dt
: P2 → P1 .

Solution: We can exploit the coordinate isomorphisms
ϕ2 : P2 → R3 , ϕ2(a0 + a1t + a2t

2) = a0e1 + a1e2 + a2e3 ∈ R3,
ϕ1 : P1 → R2 , ϕ1(a0 + a1t) = a0e1 + a1e2 ∈ R2 arising from using
the monomial bases of P2 and P1.

A. Havens Linear Independence, Basis, and Dimensions



Linear (In)dependence Revisited Basis Dimension Linear Maps, Isomorphisms and Coordinates

Coordinates relative to a Basis

Example: The Derivative of a Quadratic Polynomial

Example

The matrix we desire will actually then be the standard matrix of
the map

ϕ1 ◦
d

dt
◦ ϕ−12 : R3 → R2

which completes the diagram shown below:

d/dt
P2 P1

R3 R2

ϕ2 ϕ1

ϕ1 ◦ d
dt ◦ ϕ

−1
2
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Example: The Derivative of a Quadratic Polynomial

Example

Since d
dt p(t) = v

Ä
a0 + a1t + a2t

2
ä

= a1 + 2a2t, the bottom map
in the diagram representing the coordinate transformation
associated to the derivative isÄ
ϕ1 ◦ d

dt ◦ ϕ
−1
2

ä Ä
a0e1 + a1e2 + a2e3

ä
= a1e1 + 2a2e2 .

In particular, Å
ϕ1 ◦

d

dt
◦ ϕ−12

ã
(e1) = 0Å

ϕ1 ◦
d

dt
◦ ϕ−12

ã
(e2) = e1Å

ϕ1 ◦
d

dt
◦ ϕ−12

ã
(e3) = 2e2
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Example: The Derivative of a Quadratic Polynomial

Example

It follows that the matrix representing the derivative map
d
dt : P2 → P1 with respect to the standard monomial bases is

A =

ñ
0 1 0
0 0 2

ô
.

Observe that the first column is a zero column, and this is entirely
sensible since the derivative of a constant is 0.

Exercise

Expand on the above example and describe matrices representing
the derivative of polynomials in Pn := Pn(R), and do the same for
the integral.
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Preview: Eigen-Bases and Diagonalization

One can sometimes associate special coordinates on Fn to an
endomorphism T : Fn → Fn.

In particular, we will soon study the situation where a map
T : Rn → Rn preserves or even fixes some subspaces
E1, . . .Ek ⊂ Rn.

Suppose T preserves k such subspaces E1, . . .Ek , such that
n = dimE1 + dimE2 + . . . + dimEk , and no Ei is contained in any
Ej for i 6= j .

Then one can collect the bases of the individual subspaces into a
basis E of Rn called an eigenbasis, and there is a special associated
coordinate system called eigen-coordinates.

A. Havens Linear Independence, Basis, and Dimensions



Linear (In)dependence Revisited Basis Dimension Linear Maps, Isomorphisms and Coordinates

Coordinates relative to a Basis

Eigen-Coordinates?

We have a commutative diagram:

TRn Rn

Rn Rn

ΦE ΦE

LT ;E

What makes eigen-coordinates special is this: the transformation
[x]E 7→ [T (x)]E = [Ax]E is given by a diagonal matrix! Indeed,
LT ,E (y) = Dy for a diagonal matrix D = EAE−1, where E is the
matrix of the coordinate map ΦE : Rn → Rn.
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Homework

Please read sections 4.4, 4.5 and 4.6 of the textbook by
Friday, 3/23.

Homework in MyMathLab for section 4.2 on on Column and
Null Spaces, Images/Ranges and Kernels is due Tuesday, 3/27.

Homework in MyMathLab for section 4.3 on Basis and Linear
Independence is due Thursday, 3/29.

Exam 2 will be held Tuesday, April 4/10/18,
7:00PM-9:00PM, in Hasbrouck Lab Addition room 124.
The syllabus for the second midterm is the following sections
of the textbook: 2.2, 2.3, 3.1, 3.2, 3.3, 4.1, 4.2, 4.3, 4.4, 4.5.
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